Abstract:
The method and apparatus are used to determine class, grade and properties of fuel samples, regardless of ambient, instrument, or sample temperature, using mathematical correlations between fuel class, grade and properties and their spectra developed from a database of samples with measured properties and spectra. The ability to measure a fuel sample using the present method and apparatus is useful in identifying unknown fuel samples, determining suitability in equipment, and monitoring and controlling fuel processes, such as blending operations, distillation, and synthesis.
Abstract:
A stationary medium is employed both to separate chemicals from a sample solution and also to generate surface-enhanced Raman scattering, so that spectral analysis of the separated analyte chemical can be performed. Applied driving force causes the sample to flow into the stationary medium and to distribute therethrough, thereby causing rapid separation of the analyte chemical, and surface-enhanced Raman scattered radiation is quickly detected, at a plurality of locations along a flow path defined by the stationary medium, for ultimate analysis.
Abstract:
Sol-gel beds and deposits are utilized for SERS analysis of liquid analytes. The use of the same medium to both separate the chemicals and also for SERS greatly reduces the complexity of such apparatus and enhances the efficiency of the method.
Abstract:
The method and apparatus rapidly separate drugs and their metabolites from saliva and, in a continuous sequence of steps, rapidly detect, identify and quantify them through surface-enhanced Raman spectroscopy.
Abstract:
Sol-gel beds and deposits are utilized for SERS analysis of liquid analytes. Measurements are made at multiple points along the length of a column or channel to increase, very significantly, the speed of analysis, and use of the same medium to both separate the chemicals and also for SERS greatly reduces the complexity of such apparatus and enhances the efficiency of the method.
Abstract:
A process control method for controlling a polyolefin polymerization process, such as a solution polyethylene process, which includes five steps. The first step is to flow a stream of a solvent into a polyolefin reactor, such as flowing a stream of heptane solvent into the reactor at essentially a constant rate. The second step is to add a principal monomer to the stream of solvent, such as by adding ethylene at a controllable rate to the stream of solvent. The third step is to add a co-monomer to the stream of solvent, such as by adding 1-octene at a controllable rate to the stream of solvent. The fourth step is to determine the concentration of the principal monomer and the concentration of the co-monomer in the stream of solvent by high resolution multi-wavelength vibrational spectroscopy analysis, such as by Fourier transform infrared spectroscopy system having a spectral resolution of 4 wavenumbers which analyzes at 1909 wavenumbers for ethylene, at 1829 wavenumbers for 1-octene and at 2120 wavenumbers for a reference signal. The fifth step is to control the rate of addition of the principal monomer, the rate of addition of the comonomer or preferably the rate of addition of both the principal monomer and the co-monomer according to the determination of the fourth step to obtain the desired concentration of ethylene and 1-octene in the solvent so that, for example, the density of the polyolefin product can be controlled.
Abstract:
A stationary medium is employed both to separate chemicals from a sample solution and also to generate surface-enhanced Raman scattering, so that spectral analysis of the separated analyte chemical can be performed. Applied driving force causes the sample to flow into the stationary medium and to distribute therethrough, thereby causing rapid separation of the analyte chemical, and surface-enhanced Raman scattered radiation is quickly detected, at a plurality of locations along a flow path defined by the stationary medium, for ultimate analysis.
Abstract:
The method and apparatus rapidly separate drugs and their metabolites from saliva and, in a continuous sequence of steps, rapidly detect, identify and quantify them through surface-enhanced Raman spectroscopy.
Abstract:
The method and apparatus rapidly separate drugs and their metabolites from saliva and, in a continuous sequence of steps, rapidly detect, identify and quantify them through surface-enhanced Raman spectroscopy.
Abstract:
A method for obtaining quantitative surface-enhanced Raman (SER) spectra that corrects for deficiencies of, and variations in, the materials and devices employed, especially the SER-active media utilized, employs a reference chemical, having an effective surface-enhanced Raman factor, of known concentration within the same SER experimental field of view as the analyte chemical being measured. Knowledge of the relative amounts of SER-scattering for the reference chemical and analyte chemical allows calculating the concentration of the latter to a high degree of accuracy and precision.