GAAS MONOLITHIC INTEGRATED TERAHERTZ LOW-NOISE COMMUNICATION SYSTEM TRANSCEIVER FRONT-END

    公开(公告)号:US20230238997A1

    公开(公告)日:2023-07-27

    申请号:US17873134

    申请日:2022-07-25

    CPC classification number: H04B1/40 H03D7/165

    Abstract: The present disclosure provides a GaAs monolithic integrated terahertz low-noise communication system transceiver front-end, including an intermediate frequency circuit and a terahertz circuit. The terahertz circuit includes a local oscillator frequency tripler, a local oscillator unidirectional 3 dB filter coupler, a radio frequency 180° filter coupler, and two terahertz GaAs monolithic integrated subharmonic mixers. The local oscillator unidirectional 3 dB filter coupler and the radio frequency 180° filter coupler each include one ring-cylindrical resonant cavity and four rectangular waveguides. The ring-cylindrical resonant cavity is divided into four rectangular waveguides which are correspondingly connected to the four sector-annular resonant cavities, respectively. The present disclosure suppresses the local oscillator noise by adopting a local oscillator unidirectional 3 dB filter coupler and a radio frequency 180° filter coupler with both coupling and filtering functions, thereby achieving a low local oscillator noise transceiver front-end.

    Method for machine reading comprehension

    公开(公告)号:US11620449B2

    公开(公告)日:2023-04-04

    申请号:US17024726

    申请日:2020-09-18

    Abstract: A method for machine reading comprehension includes: S1, obtaining a character-level indication vector of a question and a character-level indication vector of an article; S2, obtaining an encoded question vector and an encoded article vector; S3, obtaining an output P1 of a bidirectional attention model and an output P2 of a shared attention model; S4, obtaining an aggregated vector P3; S5, obtaining a text encoding vector P4; S6, obtaining global interaction information between words within the article; S7, obtaining a text vector P5 after using the self-attention model; S8, obtaining aggregated data P6 according to the text encoding vector P4 and the text vector P5; S9, obtaining a context vector of the article according to the aggregated data P6 and an unencoded article vector P; and S10, predicting an answer position according to the context vector of the article and the encoded question vector to complete the machine reading comprehension.

    IN-SITU VACUUM REACTION SYSTEM FOR DYNAMICALLY DETECTING DEFECTS

    公开(公告)号:US20230051210A1

    公开(公告)日:2023-02-16

    申请号:US17881794

    申请日:2022-08-05

    Abstract: Disclosed is an in-situ vacuum reaction system for dynamically detecting defects, which includes an electron paramagnetic resonance spectrometer, an in-situ vacuum reaction chamber, a gas supply unit, a vacuum unit, an illumination unit, a temperature control unit and a mixing bottle, the in-situ vacuum reaction chamber is arranged inside a detection cavity of the electron paramagnetic resonance spectrometer, the gas supply unit is connected to the mixing bottle through a pipeline, and the mixing bottle is connected to a gas inlet of the in-situ vacuum reaction chamber through a pipeline, the vacuum unit is connected to the gas inlet of the in-situ vacuum reaction chamber through a pipeline, the illumination unit is arranged corresponding to a detachable window of the electron paramagnetic resonance spectrometer, and the temperature control unit is connected to the electron paramagnetic resonance spectrometer through a pipeline.

    WIRELESS SINGLE-PHASE AC-TO-AC CONVERSION CIRCUIT BASED ON 2.4G MICROWAVE

    公开(公告)号:US20220385323A1

    公开(公告)日:2022-12-01

    申请号:US17645318

    申请日:2021-12-21

    Abstract: A wireless single-phase AC-to-AC conversion circuit based on a 2.4G microwave includes a receiving antenna unit, a RF switch unit, a positive voltage rectification unit, a negative voltage rectification unit and an AC synthesis unit. An output port of the receiving antenna unit is connected to the common input port of the RF switch unit. A first microwave output end of the RF switch unit and a second microwave output end of the RF switch unit are correspondingly connected to a microwave input end of the positive voltage rectification unit and a microwave input end of the negative voltage rectification unit, respectively. ADC output end of the positive voltage rectification unit and a DC output end of the negative voltage rectification unit are correspondingly connected to a positive voltage input port of the AC synthesis unit and a negative voltage input port of the AC synthesis unit, respectively.

Patent Agency Ranking