Abstract:
The present invention provides a method for manufacturing an electrode of a dye-sensitized solar cell using an inkjet printing process, an electrode formed thereby, and a dye-sensitized solar cell having the electrode. According to the method, a metal electrode is formed by jetting an ink solution containing nano metal powder on a transparent substrate or a transparent substrate in which a barrier layer is deposited to improve coating performance of a transparent conductive layer. A transparent conductive layer is formed on the transparent substrate on which the metal electrode is formed. The transparent conductive layer protects the metal electrode from liquid electrolyte.
Abstract:
The present invention applies the voltage that is swung to the notch electrode of each pixel of the electrowetting display device to reset the oil layer to not backflow such that an additional element is not disposed in the pixel, thereby increasing the aperture ratio of the pixel. Also, the reset signal generator generating and applying the reset signal is disposed inside the electrowetting display device such that additional wiring may not be disposed in the outer part of the panel.
Abstract:
Disclosed are a dye-sensitized solar cell module and a method of manufacturing the same. The dye-sensitized solar cell module includes a working electrode formed by stacking a collector and a photo-electrode to which a dye is adsorbed on a transparent conductive substrate; a counter electrode formed by stacking a collector and a catalytic electrode on a transparent conductive substrate; and an electrolyte filled in a space between the working electrode and the counter electrode sealed by a sealant. A glass substrate for the working electrode of glass substrates forming the transparent conductive substrates for the electrodes is a thin glass plate substrate thinner than the glass substrate for the working electrode.
Abstract:
Disclosed is a solid electrolyte for a dye-sensitized solar cell, which includes a three-dimensional porous thin film made of a hydrophilic polymer material, and a dye-sensitized solar cell using the same. More particularly, the present invention provides a high-efficient dye-sensitized solar cell, in which polymer nanofibers having high specific surface area are used in an electrolyte layer to effectively induce an increase in photocurrent, thereby increasing the amount of electrolyte impregnated. When the porous film prepared by the method of the present invention is used as a solid electrolyte for a dye-sensitized solar cell, a process of forming an electrolyte inlet and sealing the inlet is not required, which simplifies the entire process, compared to an existing dye-sensitized solar cell using a liquid electrolyte.
Abstract:
Disclosed is a porous film type solid electrolyte, a dye-sensitized solar cell using the same, a method for manufacturing the same. More particularly, a porous film type solid electrolyte for improving long-term durability of a dye-sensitized solar cell is disclosed. The disclosure provides a porous film type solid electrolyte prepared by impregnating an electrolyte material into a porous polymer film formed from a film composition comprising 0.1-90 wt % of a UV-curable polymer material, 0.1-10 wt % of a nonionic emulsifier and 0.01-0.1 wt % of a photocrosslinking initiator.
Abstract:
The present invention provides a plastic with improved gloss properties and a surface treatment method for plastic, which forms a nanopattern and a hardened layer on the surface of a polymer material by irradiating an argon ion beam onto the surface to change the refractive index, thus changing the gloss of the polymer variously using only the polymer/plastic material.
Abstract:
A semiconductor oxide ink composition, a method of manufacturing the composition, and a method of manufacturing a photoelectric conversion element are provided. The semiconductor oxide ink composition for inkjet printing comprises a semiconductor oxide and a solvent, wherein the semiconductor oxide comprises 0.1 to 20 parts by weight relative to 100 parts by weight of the total composition.
Abstract:
The present invention provides a method for an organic thin film solar cell and an organic thin film solar cell manufactured by the same, which can reduce manufacturing cost by simplifying manufacturing process, ensure long-lasting durability and stability, and improve energy conversion efficiency of the solar cell. In certain preferred aspects, the present invention provides a method for manufacturing an organic thin film solar cell by ion beam treatment, the method including: forming a nanopattern having a concavo-convex structure by irradiating an ion beam onto the surface of a flexible plastic film substrate; and sequentially stacking a bottom electrode layer, a photoactive layer for photoelectric conversion, and a top electrode layer, which have a nanoscale thickness, on the nanopattern of the substrate such that an electron donor and an electron acceptor in the photoactive layer, where electrons and holes are separated, form a nanopattern by the concavo-convex structure of the substrate, thus forming a bulk heterojunction structure.
Abstract:
Disclosed is a dye-sensitized solar cell. The dye-sensitized solar cell includes a working electrode and a counter electrode configured to join the working electrode. The working electrode includes a photo electrode having a plurality of photo electrode cells coated on a transparent conductive substrate and arranged in linear rows and a collector having a plurality of collector cells coated on the transparent conductive substrate and arranged along perimeters of the photo electrode and between the photo electrode cells and a collector bottom portion integrally interconnecting the collector cells. The collector cells have a same length or the collector cells arranged along the perimeters have a different length from the collector cells arranged between the photo electrode cells to increase an active area of the photo electrode.
Abstract:
The present invention provides a method for manufacturing an electrode of a dye-sensitized solar cell using an inkjet printing process, an electrode formed thereby, and a dye-sensitized solar cell having the electrode. According to the method, a metal electrode is formed by jetting an ink solution containing nano metal powder on a transparent substrate or a transparent substrate in which a barrier layer is deposited to improve coating performance of a transparent conductive layer. A transparent conductive layer is formed on the transparent substrate on which the metal electrode is formed. The transparent conductive layer protects the metal electrode from liquid electrolyte.