Abstract:
The examples relate to implementations of apparatuses, such as lighting devices, and a system that uses a speech-based user interface to provide speech-based navigation services. The speech-based user interface provides navigation instructions that direct a person to the location of an item within a premises. The person interacts with a speech-based apparatus to receive the navigation instructions as speech-based directions through the premises from a specified location to the item location, or as static navigation instructions enabling the person to navigate from the specified location to the item location. A directional microphone and a controllable speaker receive audio inputs from and output audio outputs to a specified location or subarea of the premises to a person using the speech-based user interface. The audio outputs are directed to the person in the subarea of the premises, and have a higher amplitude within the subarea than outside the subarea of the premises.
Abstract:
A lighting device or an apparatus for use with a light source has one or more sensors, intelligence in the form of programmed processors and communication capabilities. Each sensor is configured to monitor one or more conditions external to a lighting device not directly related to operational performance of the respective lighting device. Programming provides a standardized interface to enable processing of sensed conditions from sensors of different types.
Abstract:
A spectrometer-equipped lighting device detects substances in an environment around the device. A fiber detector is optically coupled to receive light from a light source. The fiber detector has a bare area from which emanates an evanescent wave of light surrounding an exterior of the fiber detector to interact with the environment in which the fiber detector is exposed. The spectrometer, optically coupled to an opposite end of the fiber detector, detects the light output and in response, generates signals representative of the spectral power distribution of the light of the evanescent wave that has interacted with the surrounding environment. A controller analyzes the spectrometer generated signals and initiates action based on the analysis of the generated signals or outputs a report indicating an environmental condition detected by the spectrometer-equipped device.
Abstract:
A lighting system includes luminaires each having a light source for providing illumination in a space and a radio frequency identification (RFID) antenna. An RFID reader is coupled to the RFID antennas in all the luminaires. The RFID reader may transmit at least one RFID intended recipient message from at least one of the antennas and receive a responsive RFID reply message from a recipient device within the space via a plurality of the antennas. The RFID reader may determine a signal attribute of a reply message signal received via each receiving antenna. The determined signal attributes of the reply message signals received via antennas and information about locations of the receiving antennas are processed to estimate a position of the recipient device within the space.
Abstract:
Disclosed are examples of optical/electrical devices including a variable TIR lens assembly having a transducer, an optical lens and an electrowetting cell coupled to an exterior wall of the lens. The electrowetting cell contains two immiscible liquids having different optical and electrical properties. One liquid has a high index of refraction, and the other liquid has a low index of refraction. At least one liquid is electrically conductive. A signal causes the high index of refraction and the low index of refraction liquids to assume various positions within the electrowetting cell along the exterior wall. The properties of the optical lens, e.g. its total internal reflectivity, change depending upon the position of the respective liquids along the exterior wall. The light characteristics of the assembly change to produce a light beam over a range of light beam outputs or a field of view over a range of fields of view.
Abstract:
A lighting unit includes an architectural panel having an overall thickness that is measured between a first surface that is configured to be exposed to light output by the lighting unit and a second surface that is opposite the first surface, and a light fixture embedded in the architectural panel. The light fixture includes a solid state light source, an optic, a power supply and a driver circuit that at least partially embedded in the recess of the panel. The light fixture is configured to output light in an output direction extending out away from the first surface of the panel. The light fixture extends from the first surface of the panel in a direction opposite the output direction by a distance that is less than the overall thickness of the architectural panel.
Abstract:
A lighting device includes a first light source configured to generate light for illumination of a space and a second light source configured to generate light of a particular wavelength independently from the first light source. The light generated by the second light source is output at a sufficient intensity so as to reasonably expect to support an intended benefit other than illumination of the space. The first light source and the second light source are integrated into the same lighting device. The lighting device includes an optical element coupled to the first and second light sources that is configured to produce a light output of the lighting device. The lighting device outputs the light for illumination of the space and the light of the particular wavelength for the other intended benefit from the second light source via the same output of the lighting device.
Abstract:
An example of a building automation system utilizes intelligent system elements, some of which are lighting devices having light sources, and some of which are utility building control and automation elements. Some utility building control and automation elements include a controllable mechanism for use in control of some aspect of the building other than lighting. Another intelligent system element may include either a user interface component and be configured as a building controller, or include a detector and be configured as a sensor. Each intelligent system element includes a network communication interface, processor, memory and programming to configure the intelligent system element as a lighting device, utility building control and automation element, controller or sensor. At least one of the intelligent lighting devices is configured as a building control and automation system server. Several examples, however, implement the overall control using distributed processing.
Abstract:
An application running on a mobile device presents information about a lighting product, for example, selected from a catalog on a graphical user interface via one or more elements (e.g. a touchscreen) of the mobile device and captures an identification of the selected product. The user interface includes a user selectable indication of a lighting design tool, e.g. a button, icon or other link to the tool. User selection of the tool indicator initiates access to the lighting design tool; and the application passes the identification of the selected product to the lighting design tool. The lighting design tool processes the identification of the selected product and an output of the lighting design tool is presented based in part on photometric information about the selected product automatically retrieved by and populated to the lighting design tool without further manual input to obtain the photometric information about the selected product.
Abstract:
An exemplary lighting system utilizes intelligent system elements, such as lighting devices, user interfaces for lighting control or the like and possibly sensors, and utilizes network communication amongst such intelligent system elements. Some processing functions performed within the system are implemented on a distributed processing basis, by two or more of the intelligent elements of the lighting system. Distributed processing, for example, may enable use of available processor and/or memory resources of a number of intelligent system elements to process a particular job. Another distributed processing approach might entail programming to configure two or more of the intelligent system elements to implement multiple instances of a server functionality with respect to client functionalities implemented on intelligent system elements.