Abstract:
The present disclosure relates to glycoproteins, particularly monoclonal antibodies, comprising a glycoengineered Fc region, wherein said Fc region comprises an optimized N-glycan having the structure of Sia2(α2-6)Gal2GlcNAc2Man3GlcNAc2. The glycoengineered Fc region binds FcγRIIA or FcγRIIIA with a greater affinity, relative to comparable monoclonal antibodies comprising the wild-type Fc region. The monoclonal antibodies of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by FcγR is desired, e.g., cancer, autoimmune, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
Abstract:
Immunogenic compositions comprising hemagglutinin (HA) variants and/or neuraminidase (NA) variants, which may be contained in an influenza A virus, and uses thereof for eliciting immune responses against influenza A virus.
Abstract:
Modified Fc regions of antibodies and antibody fragments, both human and humanized, and having enhanced stability and efficacy, are provided. Fc regions with core fucose residues removed, and attached to oligosaccharides comprising terminal sialyl residues, are provided. Antibodies comprising homogeneous glycosylation of Fc regions with specific oligosaccharides are provided. Fc regions conjugated with homogeneous glycoforms of monosaccharides and trisaccharides, are provided. Methods of preparing human antibodies with modified Fc using glycan engineering, are provided.
Abstract:
The present disclosure is directed to vaccines, antibodies, and/or immunogenic conjugate compositions targeting the SSEA3/SSEA4/GloboH associated epitopes (natural and modified) which elicit antibodies and/or binding fragment production useful for modulating the globo-series glycosphingolipid synthesis. The present disclosure relates to methods and compositions which can modulate the globo-series glycosphingolipid synthesis. Particularly, the present disclosure is directed to glycoenzyme inhibitor compound and compositions and methods of use thereof that can modulate the synthesis of globo-series glycosphingolipid SSEA3/SSEA4/GloboH in the biosynthetic pathway; particularly, the glycoenzyme inhibitors target the alpha-4GalT; beta-4GalNAcT-I; or beta-3GalT-V enzymes in the globo-series synthetic pathway. Moreover, the present disclosure is also directed to the method of using the compositions described herein for the treatment or detection of hyperproliferative diseases and/or conditions.
Abstract:
Immunogenic compositions, cancer vaccines and methods for treating cancer comprising FMS, the fucose-enriched polysaccharide fraction from Reishi F3, are provided. Compositions comprise fucose-enriched Reishi polysaccharide fraction (FMS) MW=˜35 kDa, wherein the FMS is isolated by size-exclusion chromatography from Reishi F3, and the FMS comprises polysaccharides having primarily a backbone selected from 1,4-mannan and 1,6-α-galactan, wherein the backbone is linked to a terminal fucose-containing side-chain Immunogenic compositions comprising glycolipid adjuvants are provided. Antibodies generated by immunogenic compositions disclosed herein bind cancer cells comprising antigens Globo H, Globo H, Gb3, Gb4, Gb5 (SSEA-3) and SSEA-4 on the cell surface.
Abstract:
The present disclosure relates to compositions and methods of use comprising antibodies or binding fragments thereof further comprising universal Fc glycoforms.
Abstract:
An immunogenic composition containing a glycan conjugate including a carrier protein, and a glycan including Globo H, an immunogenic fragment thereof, or stage-specific embryonic antigen-4 (SSEA-4), wherein the glycan is conjugated with the carrier protein through a linker.
Abstract:
The present disclosure relates to methods and compositions which can modulate the globoseries glycosphingolipid synthesis. Particularly, the present disclosure is directed to glycoenzyme inhibitor compound and compositions and methods of use thereof that can modulate the synthesis of globoseries glycosphingolipid SSEA-3/SSEA-4/GloboH in the biosynthetic pathway; particularly, the glycoenzyme inhibitors target the alpha-4GalT; beta-4GalNAcT-I; or beta-3GalT-V enzymes in the globoseries synthetic pathway. Additionally, the present disclosure is also directed to vaccines, antibodies, and/or immunogenic conjugate compositions targeting the SSEA-3/SSEA-4/GLOBO H associated epitopes (natural and modified) which elicit antibodies and/or binding fragment production useful for modulating the globoseries glycosphingolipid synthesis. Moreover, the present disclosure is also directed to the method of using the compositions described herein for the treatment or detection of hyperproliferative diseases and/or conditions. Furthermore, the instant disclosure also relates to cancer stem cell biomarkers for disgnostic and therapeutic uses.
Abstract:
The present disclosure relates to a novel class of anti-CD20 monoclonal antibodies comprising a homogeneous population of anti-CD20 IgG molecules having the same N-glycan on each of Fc. The antibodies of the invention can be produced from anti-CD20 monoclonal antibodies by Fc glycoengineering. Importantly, the antibodies of the invention have improved therapeutic values with increased ADCC activity and increased Fc receptor binding affinity compared to the corresponding monoclonal antibodies that have not been glycoengineered.
Abstract:
Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, lung, breast, mouse, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervix, ovary, and/or prostate cancer.