Abstract:
A conductor assembly and method for making an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one series of embodiments the assembly comprises a spiral configuration, positioned along paths in a series of concentric cylindrical planes, with a continuous series of connected turns, each turn including a first arc, a second arc and first and second straight segments connected to one another by the first arc. Each of the first and second straight segments in a turn is spaced apart from an adjacent straight segment in an adjoining turn.
Abstract:
Systems and methods for removing plaque from blood vessels by applying constant or time varying magnetic or electrical fields. In one embodiment a system includes winding configurations positioned about a central axis along which a body region may be placed. Each winding configuration generates a magnetic field in a direction which passes through the body region. A first winding configuration generates a first magnetic field component perpendicular to a second magnetic field component generated by a second winding configuration. In a related method for removing a deposit of plaque from a position along a wall of a blood vessel a magnetic field is applied which has a net direction predominantly orthogonal to the direction of the flow of blood through the vessel.
Abstract:
A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface of second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.
Abstract:
A wiring assembly having a support structure with a surface region formed about a central axis. In one embodiment, a groove formed in the surface region has first and second opposing wall portions each extending inward toward the central axis, and a length of conductor is positioned in the groove to extend along the groove. A sheet of material is positioned about a portion of the conductor, and a continuous medium extends from one of the groove wall portions to the sheet.
Abstract:
A continuous method of manufacturing permanent magnets and the permanent magnets created thereby. A fine powder is created from a combination of magnetic metals. The powder (a metal alloy) is placed in a non-magnetic container of any desired shape which could be, for example, a tube. The metal alloy and tube are swaged while a magnetic field is applied. Once swaging is complete, the metal alloy and tube are sintered and then cooled. Instead of sintering, a bonding agent can mixed into the powder. Following cooling, the metal alloy is magnetized by placing it between poles of powerful electromagnets with the desired field direction. The process of the invention enables mass-produced, cost-effective PM products, which are more robust, easily assembled into products, and enables new “wire-like” shapes with arbitrary magnetization direction. The process enables mass production of permanent magnets of any desired cross section, produces permanent magnets continuously that may be cut to any length, and may, in an embodiment, result in directional magnets
Abstract:
A system and method for motivating a particle, for example a drug molecule, to a predetermined location in three dimensional space by applying magnetic fields, which may be static or time-varying, to the particle. The magnetic fields may be applied by one or a plurality of magnets, and may be multipole of any order such as octopole or decapole. The electric current driving the magnet coils may be pulsed for inducing a voltage in the molecules to aid in motivation. In an exemplary embodiment of the invention in which the substance is a drug, for example a drug molecule or plurality of drug molecules, the magnets may be positioned outside the body of the person to be treated, and the magnetic field(s), which may be time-varying, are used to motivate the drug molecule(s) to a predetermined location in an animal's body. The animal may be a human.
Abstract:
A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface of second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.
Abstract:
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.
Abstract:
The present invention provides a method of manufacturing magnets, including magnets comprising coil windings which may be multiple meters in length. In an embodiment, the support structure comprises a cylinder in which machined grooves are formed to define the magnet conductor path. The segments may consist of a composite material or a metal in the shape of a cylinder, but which need not be manufactured from a single piece of material. Rather, the support structure may be formed in multiple connectable segments which, when connected together, form a completed wiring support structure. Each segment may be of sufficient length to support multiple individual coil turns in a helical configuration. When the segments are connected the helical configuration continues without interruption from connectable segment to connectable segment. The segmented wiring support structure of the invention may be applied to linear or curved magnet geometries.
Abstract:
Apparatus and method for removing ions of a common charge type from a fluid. In one embodiment of the method a fluid is passed through a flow region. A magnetic field is applied to the region while the fluid is flowing through the region to provide a magnetic field gradient in the flow region. An electric field is applied across the flow region while the fluid is flowing through the region and while applying the magnetic field to the region.