Abstract:
A battery core includes an anode electrode collector and a cathode current collector. The battery core is created by defining an anode solution cavity on an anode electrode collector; defining a cathode solution cavity on a cathode electrode collector; depositing an anode solution into the anode solution cavity; depositing a cathode solution into the cathode solution cavity; curing the anode solution within the anode solution cavity; and curing the cathode solution within the cathode solution cavity. The anode electrode collector and the cathode current collector may be combined in a sandwich configuration and may be separated by one or more separators.
Abstract:
A battery system comprises a plurality of substantially planar layers extending over transverse areas. The plurality of layers comprises at least one cathode layer, at least one anode layer, and at least one separator layer therebetween.
Abstract:
Aspects of the present disclosure involve various battery can designs. In general, the battery can design includes two fitted surfaces oriented opposite each other and seam welded together to form an enclosure in which a battery stack is located. To form the enclosure, the two fitted surfaces are welded together along the large perimeter. Other swelling-resisting advantages may also be achieved utilizing the battery can design described herein including, but not limited to, the ability to modify one or more can wall thicknesses to control a pressure applied to the battery stack by the can, overall reduction in wall thickness of the can through the use of stronger materials for the can surfaces, additional supports structures included within the can design, and/or bossing or other localized thinning of surfaces of the can.
Abstract:
Battery systems according to embodiments of the present technology may include a battery cell having an electrode tab extending from an edge of a first side of the battery cell. The battery system may also include a module electrically coupled with the battery cell. The module may include a mold defining a recess along a first side of the module. The module may also include a conductive tab extending from the first side of the module. The conductive tab may be coupled with the electrode tab. The electrode tab may be characterized by a curvature along a length of the electrode tab, and a distal end of the electrode tab may be positioned within the recess defined by the mold.
Abstract:
A battery core includes an anode electrode collector and a cathode current collector. The battery core is created by defining an anode solution cavity on an anode electrode collector; defining a cathode solution cavity on a cathode electrode collector; depositing an anode solution into the anode solution cavity; depositing a cathode solution into the cathode solution cavity; curing the anode solution within the anode solution cavity; and curing the cathode solution within the cathode solution cavity. The anode electrode collector and the cathode current collector may be combined in a sandwich configuration and may be separated by one or more separators.
Abstract:
A battery system comprises a plurality of substantially planar layers extending over transverse areas. The plurality of layers comprises at least one cathode layer, at least one anode layer, and at least one separator layer therebetween.
Abstract:
The disclosed embodiments relate to the design and manufacture of a battery cell. The battery cell includes a jelly roll containing layers which are wound together, including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a mechanical structure disposed around a perimeter of the jelly roll to maintain a structural integrity of the jelly roll. Finally, the battery cell includes a pouch enclosing the mechanical structure and the jelly roll, wherein the pouch is flexible.
Abstract:
Sockets that provide easy access for users to change cards while allowing the use of thinner device enclosures. One example provides a socket having two positions. When the socket is in an open state, the card may be oriented in a direction substantially away from the main logic board. When the socket is in a closed state, the card moves such that it is oriented at least closer to being in parallel to the main logic board.
Abstract:
In a first embodiment, a pre-formed pouch is provided that includes a plurality of walls joined in order to define an aperture. An assembly may be inserted into the aperture, which may then be sealed. Further, the pre-formed pouch may be fitted to the shape or dimensions of the assembly that will be inserted. In a second embodiment, an assembly may be covered in a plurality of layers of material, such as first layer of plastic, a layer of metal, and then a second layer of plastic. Each of the coverings may be formed by dipping the assembly in plastic or metal (or other material), molding layers around the assembly, coating the assembly in the layers, vapor depositing plastic or metal (or other material) onto the assembly, and/or a combination of these operations.
Abstract:
Electrical connections that provide a highly manufacturable, well-shielded path from a cable to a printed circuit board. One example provides a path that includes a card and a connector. Conductors in a cable may be attached to a card. The card may be shielded with a ground plane on one or more sides and edges. The card may insert into a connector that may be attached to a printed circuit board. The connector may include a shield that may have a top portion that forms electrical contact with a ground plane on a top of a card inserted in the connector. The connector may have an opening for accepting the card that is defined by the top portion of the shield and a plurality of rows of contacts. The rows of contacts may include an outer row of ground contacts, and an inner row of signal contacts.