Abstract:
A system and method for collecting motion data using a fitness tracking device located on an arm of a user, detecting that the arm is constrained based on the motion data, estimating a stride length of the user based on the motion data and historical step cadence-to-stride length data, calculating fitness data using the estimated stride length, and outputting the fitness data to the user.
Abstract:
This disclosure relates to techniques for adaptive C-DRX Management. A wireless device and a cellular base station may establish a cellular link. According to some embodiments, the base station may monitor upcoming traffic with the wireless device. Based at least in part on the upcoming traffic for the wireless device, the base station may provide a command indicating to the wireless device to enter C-DRX. The command may further indicate to the wireless device a number of C-DRX cycles through which to remain in a low power state.
Abstract:
Embodiments relate to apparatus, systems, and methods for reception of calls on a mobile device that includes Wi-Fi and cellular radios. The mobile device may be configured to establish communication on a Wi-Fi network with a cellular carrier. The mobile device may further be configured to register a first IP address with an IMS server for the Wi-Fi network communication and register a second IP address with the IMS server for the cellular network communication (or register different ports of a single IP address with Wi-Fi and cellular). Upon occurrence of a mobile terminating call from the cellular carrier, the mobile device may receive an incoming call notification on one or both of the Wi-Fi network using the first IP address and the cellular network using the second IP address.
Abstract:
This disclosure relates to application dependent channel condition assessment mode selection for reduced power consumption in cellular communications. In one embodiment, a channel condition assessment mode may be selected for assessing a wireless communication channel used for a cellular link. The channel condition assessment mode may be selected from at least two channel condition assessment modes, and may be selected at least in part based on application characteristics of an application using the cellular link. Channel condition assessment may be performed according to the selected channel condition assessment mode. Channel condition assessment results obtained from the channel condition assessment may be transmitted to a cellular base station via the cellular link.
Abstract:
Apparatus and methods are disclosed for performing delayed hybrid automatic repeat request (HARQ) communications in the downlink (DL) to reduce power consumption for a user equipment (UE) during a connected mode discontinuous reception (C-DRX) cycle. An enhanced NodeB can be configured to monitor a physical uplink control channel (PUCCH) for DL HARQ information to determine when the PUCCH contains a negative acknowledgement (NACK) message, and in response to determining that the PUCCH contains a NACK message, the eNodeB can wait until a next C-DRX ON duration to transmit a HARQ DL retransmission. The eNodeB can also determine whether or not to bundle the HARQ DL retransmission in consecutive transmission time intervals, based on a signal to interference plus noise ratio (SINR) associated with the UE.
Abstract:
Wireless communication devices (UEs) may include multiple receive (RX) chains and associated antennas, and at least one transmit (TX) chain co-located with one of the RX chains. The UE may track instant fading of the antenna gain(s) during reception of packets from an associated access point (AP) device to which the UE intends to transmit packets. The UE may also track long term antenna gain(s), using any packets received at the multiple RX chains within the UE. At a switching occasion, a decision is made by the UE whether to switch antennas. If the instant fading detection is based on packets received no later than a specified time period prior to the switching occasion, then the UE may make the switching decision based on the results of the instant fading tracking. Otherwise, the UE may make the switching decision based on the results of the long term antenna gain tracking.
Abstract:
Wireless communication devices (UEs) may include multiple receive (RX) chains and associated antennas, and at least one transmit (TX) chain co-located with one of the RX chains. The UE may track instant fading of the antenna gain(s) during reception of packets from an associated access point (AP) device to which the UE intends to transmit packets. The UE may also track long term antenna gain(s), using any packets received at the multiple RX chains within the UE. At a switching occasion, a decision is made by the UE whether to switch antennas. If the instant fading detection is based on packets received no later than a specified time period prior to the switching occasion, then the UE may make the switching decision based on the results of the instant fading tracking. Otherwise, the UE may make the switching decision based on the results of the long term antenna gain tracking.
Abstract:
A mobile wireless device adapts receive diversity during discontinuous reception based on downlink signal quality, page indicators and page messages. When the downlink signal quality exceeds a pre-determined threshold, the mobile wireless device decodes a page indicator channel through an initial antenna, and otherwise, decodes a paging channel through the initial antenna without decoding the page indicator channel. The mobile wireless device switches to decoding the paging channel through an alternate antenna when a page indicator decodes as an erasure. When a paging message received through a single antenna decodes with an incorrect error checking code, the mobile wireless devices enables receive diversity through multiple antennas for subsequent decoding. The mobile wireless device switches between single antenna reception and multiple antenna reception based on tracking multiple consecutive error checking code failures and successes.
Abstract:
Apparatus and methods are disclosed for performing delayed hybrid automatic repeat request (HARQ) communications in the downlink (DL) to reduce power consumption for a user equipment (UE) during a connected mode discontinuous reception (C-DRX) cycle. An enhanced NodeB can be configured to monitor a physical uplink control channel (PUCCH) for DL HARQ information to determine when the PUCCH contains a negative acknowledgement (NACK) message, and in response to determining that the PUCCH contains a NACK message, the eNodeB can wait until a next C-DRX ON duration to transmit a HARQ DL retransmission. The eNodeB can also determine whether or not to bundle the HARQ DL retransmission in consecutive transmission time intervals, based on a signal to interference plus noise ratio (SINR) associated with the UE.
Abstract:
This disclosure relates to optimizing power consumption for cellular communication based on transport block size in combination with channel condition measurements via power amplifier biasing. According to one embodiment, an indication of a transport block size to be used for uplink communication with a base station may be received. It may be determined that the transport block size provides more robust communication characteristics than required for current channel conditions. A power amplifier (PA) bias current for uplink communication with the cellular base station may be selected based at least in part on determining that the transport block size provides more robust communication characteristics than required for the current channel conditions. In particular, PA bias current selection may be biased to reduce power consumption at a cost of greater non-linearity based on the transport block size providing more robust communication characteristics than required for the current channel conditions.