摘要:
Embodiments of a high-throughput (HT) communication station (STA) and method for communicating over a primary and a secondary channel are generally described herein. In some embodiments, the high-throughput (HT) communication station (STA) comprises a physical layer (PHY) and a media-access control (MAC) layer to provide a data unit to the physical layer. The PHY layer may be configured to transmit a packet that includes the data unit over a channel bandwidth comprising a first channel and an additional channel in accordance with an OFDM communication technique. The packet may have a frame structure that includes a channel bandwidth parameter to indicate the channel bandwidth used, a modulation and coding parameter to indicate a modulation and coding scheme of the packet as transmitted over the channel bandwidth.
摘要:
An embodiment of the present invention provides a method of supporting multiple protocols in a wireless network operating according to an Institute for Electronic and Electrical Engineers IEEE) 802.16 standard, comprising adding a new convergence sub layer (CS) type in which an extra field is added to an 802.16 service data unit (SDU) to indicate which higher layer protocol is carried in a 802.16 SDU payload.
摘要:
A multicarrier receiver generates a quantized transmit beamformer matrix ({tilde over (V)}) for each subcarrier of a multicarrier communication channel for use by a multicarrier transmitting station. The multicarrier receiver applies a corrected receiver beamformer matrix (ŨH) to received subcarriers signals generated by signals received from the transmitting station.
摘要:
A frame structure for communicating over a high-throughput communication channel includes a channelization field as part of a current data unit to indicate a frequency and space configuration of subsequent portions of the current data unit.
摘要:
An adaptive multicarrier wireless communication system, apparatus and associated methods are generally disclosed herein. In at least one embodiment, channel state information is used to perform bit loading and power allocation within a multicarrier system. In an example technique, after active subcarriers have been identified for a multicarrier channel and an initial power distribution has been made, a subset of active subcarriers may be found that exceed a channel quality performance threshold. Excess power may then be identified by determining how much power could be reduced in the identified subcarriers so that they still meet, but do not exceed the channel quality performance threshold. In one possible approach, the excess power may be re-allocated to other subcarrier subsets.
摘要:
An orthogonal-frequency division multiplexed (OFDM) transmitter is configured to transmit a data unit in accordance with a multiple-input multiple-output (MIMO) technique over a wideband channel comprising a 20 MHz channel and another channel using a plurality of spatially diverse antennas. The transmitter is further configured to include in the data unit, a parameter indicating a modulation and coding scheme and a parameter indicating number of spatial streams. Each of the spatial streams is encoded and beamformed for receipt by one or more different receiving stations.
摘要:
A multi-antenna transmitter is configured for orthogonal frequency division multiplexed (OFDM) communications. The multi-antenna transmitter includes circuitry to receive an input bit sequence for code block segmentation including adding filler bits based on a selected code block size, a encoder to encode the bit sequence and an interleaver configurable to perform interleaving operations on blocks of bits of various code block sizes of the bit sequence. A controller is to select the code block size for the interleaver and OFDM transmitter circuitry to transmit OFDM symbols on subcarriers utilizing more than one antenna. The OFDM symbols are generated at least in part from the interleaved blocks.
摘要:
A multi-antenna transmitter includes an adaptive bit interleaver for orthogonal frequency division multiplexed (OFDM) communications. The adaptive bit interleaver permutes a variable number of coded bits per OFDM symbol (Ncbps). The variable number of coded bits is calculated based on individual subcarrier modulation assignments for orthogonal subcarriers. The interleaver matrix size may be based on the variable number of coded bits per OFDM symbol and the number of subchannels. The interleaver may add padding bits to the interleaver matrix to fill any remaining positions, and after performing an interleaving operation, the interleaver may prune the padding bits to provide a sequence of interleaved bits for subsequent modulation on the orthogonal subcarriers and transmission by more than one antenna. The transmitter may transmit the OFDM symbol in accordance with an IEEE 802.16 standard.
摘要:
A multiple-input-multiple output (MIMO) transmitter for transmitting a group of sequential orthogonal frequency division multiplexed (OFDM) symbols on a time-division duplexed (TDD) channel in accordance with an IEEE 802.16 standard using a plurality of antennas. The MIMO transmitter comprises a spatial-frequency parser to parse a block of bits into spatial-frequency blocks of a variable number of coded bits, and subcarrier modulators to individually modulate OFDM subcarriers with the spatial-frequency blocks in accordance with spatial-frequency subcarrier modulation assignments to generate groups of symbol-modulated subcarriers. The TDD channel comprises a plurality of the groups of the OFDM subcarriers, and the OFDM subcarriers within each group of subcarriers and within each group of sequential OFDM symbols have the same spatial-frequency subcarrier modulation assignments.
摘要:
In an orthogonal frequency division multiplexed (OFDM) system, a transmitter and/or receiver communicate separate data streams on non-orthogonal spatial channels. Each spatial channel may use the same set of OFDM subcarriers and may take advantage of the multipath characteristics of the spatial channel allowing the communication of additional data without an increase in frequency bandwidth. Space-frequency subcarrier modulation assignments may be dynamically assigned on a per subcarrier basis as well as a per spatial channel basis to help maximize the data-carrying capacity of the channel. In some embodiments, each of the spatial channels may be associated with one of a plurality of spatially diverse antennas. In other embodiments, beamforming may be performed to allow the transmission and/or reception of signals within the spatial channels.