Abstract:
A network-based data store may implement retention-based management techniques for data stored at the network-based data store. When data is received for storage at the network-based data store, a retention time for the data may be determined. Storage locations at persistent storage devices of the network-based data store may be selected according to the retention time. The data may then be placed at the storage locations. When a request to delete data is received, retention times of co-located data may be evaluated to determine whether the deletion may be delayed. Delayed deletions may allow the data to be subsequently deleted with at least some of the co-located data. Repair operations to maintain the data according to a durability policy may be modified according to retention time for a data suffering a loss of redundancy.
Abstract:
A transcoding service is described that is capable of transcoding or otherwise processing content, such as video, audio or multimedia content, by utilizing one or more pipelines. A pipeline can enable a user to submit transcoding jobs (or other processing jobs) into an available pipeline, where a transcoding service (or other such service) assigns one or more computing resources to process the jobs received to each pipeline. The transcoding service and the pipelines can be provided by at least one service provider (e.g., a cloud computing provider) or other such entity to a plurality of customers. A service provider can also provide the computing resources (e.g., servers, virtual machines, etc.) used to process the transcoding jobs from the pipelines.
Abstract:
Resource management techniques, such as cache optimization, are employed to organize resources within caches such that the most requested content (e.g., the most popular content) is more readily available. A service provider utilizes content expiration data as indicative of resource popularity. As resources are requested, the resources propagate through a cache server hierarchy associated with the service provider. More frequently requested resources are maintained at edge cache servers based on shorter expiration data that is reset with each repeated request. Less frequently requested resources are maintained at higher levels of a cache server hierarchy based on longer expiration data associated with cache servers higher on the hierarchy.
Abstract:
A system, method and computer-readable medium for request routing based on cost information are provided. A client request processing a resource identifier for requested content transmits a first DNS query to a content delivery network service provider. The content delivery network service provider transmits an alternative resource identifier in response to the client computing device DNS query. The alternative resource identifier is selected as a function of cost information. The client computing device then issues a second DNS query to the same content delivery network service provider. The content delivery network service provider can then either resolve the second DNS query with an IP address of a cache component or transmit another alternative resource identifier that will resolve to the content delivery network service provider. The process can repeat with the content delivery network service provider's network until a DNS nameserver resolves a DNS query from the client computing device.
Abstract:
A system and method for content distribution are provided. A content provider generates a network topology having one or more subnetworks made up of content sources. The content provider segments content, such as applications, into segments for distribution. The content provider then distributes the content such that for each identified subnetwork, each content segment is distributed to a content source. Subsequent, client computing device requests for content can be serviced by selecting a content source in a particular subnetwork selected for delivering the requested content to the client computing device to minimize traffic flow of the requested content through the nodes of the distribution network.
Abstract:
A system, method, and computer readable medium for managing CDN service providers are provided. A network storage provider storing one or more resources on behalf of a content provider obtains client computing device requests for content. The network storage provider processes the client computing device requests and determines whether a subsequent request for the resource should be directed to a CDN service provider as a function of the updated or processed by the network storage provider storage component.
Abstract:
Patterns of access and/or behavior can be analyzed and persisted for use in pre-fetching data from a physical storage device. In at least some embodiments, data can be aggregated across volumes, instances, users, applications, or other such entities, and that data can be analyzed to attempt to determine patterns for any of those entities. The patterns and/or analysis can be persisted such that the information is not lost in the event of a reboot or other such occurrence. Further, aspects such as load and availability across the network can be analyzed to determine where to send and/or store data that is pre-fetched from disk or other such storage in order to reduce latency while preventing bottlenecks or other such issues with resource availability.
Abstract:
A group of computers is configured to implement a block storage service. The block storage service includes a block-level storage for storing data from a set of distinct computing instances for a set of distinct users. An interface is configured to allow the set of distinct users to specify respective destinations for storing backup copies of respective data stored in the block-level storage for the distinct users. At least some of the respective destinations are for different storage systems remote from one another. A backup copy function is provided for creating backup copies of data stored in the block-level storage by the set of distinct computing instances for the set of distinct users. The backup copies are stored in different destination locations specified by respective ones of the plurality of distinct users via the interface.
Abstract:
A system, method, and computer readable medium for managing resources maintained in resource cache components are provided. A network storage provider storing one or more resources on behalf of a content provider obtains client computing device requests for content. The network storage provider provides resources that are received and maintained on resource cache components. The network storage provider either processes requests or provides notifications to the resource cache components to facilitate the management of resources that need to be updated or are otherwise treated as invalid.
Abstract:
Resource management techniques, such as cache optimization, are employed to organize resources within caches such that the most requested content (e.g., the most popular content) is more readily available. A service provider utilizes content expiration data as indicative of resource popularity. As resources are requested, the resources propagate through a cache server hierarchy associated with the service provider. More frequently requested resources are maintained at edge cache servers based on shorter expiration data that is reset with each repeated request. Less frequently requested resources are maintained at higher levels of a cache server hierarchy based on longer expiration data associated with cache servers higher on the hierarchy.