摘要:
A method and system for maximizing a quality of service (“QoS”) level in a portable computing device (“PCD”) by preempting the generation of thermal energy in excess of a threshold are disclosed. The method includes receiving a workload request for a processing component within the PCD. A processing component is selected for allocation of the workload based on thermal factors associated with the processing component. Thermal factors may comprise data indicative of real-time thermal energy generation near the processing component, predictive data derived from known characteristics of heat producing components that are physically proximate to the processing component, queued workload burdens for the processing component, etc. A processing component is selected for allocation of the workload based on the thermal factors. By leveraging the thermal factors to allocate workloads, thermal generation can be proactively managed such that reliance on reactive thermal mitigation techniques, which negatively impact QoS, can be reduced.
摘要:
A method and system for managing resources of a portable computing device is disclosed. The method includes receiving node structure data for forming a node, in which the node structure data includes a unique name assigned to each resource of the node. A node has at least one resource and it may have multiple resources. Each resource may be a hardware or software element. The system includes a framework manger which handles the communications between existing nodes within a node architecture. The framework manager also logs activity of each resource by using its unique name. The framework manager may send this logged activity to an output device, such as a printer or a display screen. The method and system may help reduce or eliminate a need for customized APIs when a new hardware or software element (or both) are added to a portable computing device.
摘要:
Systems and methods for optimizing performance scaling algorithms designated for operation on a mobile device are disclosed. A system memory includes program, use case, and results stores in addition to test logic. The program store contains a set of programs defined by the combination of a performance scaling algorithm and a set of parameters. The use case store contains information that identifies expected tasks to be performed by end users of the mobile device over time. The results store organizes a respective merit value determined after each of the set of programs has been executed for tasks defined by each use case. When executed, the test logic adjusts the mobile device and associates a select program for each of the use cases in response to the stored merit values. The merit values are determined as a function of a performance metric and a power metric.
摘要:
Systems and methods for optimizing performance scaling algorithms designated for operation on a mobile device are disclosed. A system memory includes program, use case, and results stores in addition to test logic. The program store contains a set of programs defined by the combination of a performance scaling algorithm and a set of parameters. The use case store contains information that identifies expected tasks to be performed by end users of the mobile device over time. The results store organizes a respective merit value determined after each of the set of programs has been executed for tasks defined by each use case. When executed, the test logic adjusts the mobile device and associates a select program for each of the use cases in response to the stored merit values. The merit values are determined as a function of a performance metric and a power metric.
摘要:
A method of dynamically controlling power within a central processing unit is disclosed and may include entering an idle state, reviewing a previous busy cycle immediately prior to the idle state, and based on the previous busy cycle determining a CPU frequency for a next busy cycle.
摘要:
In a portable computing device having a node-based resource architecture, resource requests are batched or otherwise transactionized to help minimize inter-processing entity messaging or other messaging or provide other benefits. In a resource graph defining the architecture, each node or resource of the graph represents an encapsulation of functionality of one or more resources controlled by a processor or other processing entity, each edge represents a client request, and adjacent nodes of the graph represent resource dependencies. A single transaction of resource requests may be provided against two or more of the resources.
摘要:
A method and system for determining optimal operating parameters for conserving power of a portable computing device may include plotting a hypersurface in a coordinate system. The method includes defining one or more axes in a coordinate system, such as a Cartesian coordinate system, that impact power consumption of a PCD and which may be held as constants when applied as workloads on CPU. Then, at least one axis is identified as an unknown or variable which may be optimized for power consumption. After the hypersurface containing optimized values is created for various workload scenarios for the PCD, workloads corresponding to the synthetic workloads described above are applied to the PCD. Workload predictors, like a DCVS algorithm, are executed by the PCD and are observed and compared to the hypersurface. Parameters for the workload predictor may be adjusted based on the values from the hypersurface.
摘要:
A method and system for dynamically creating and servicing master-slave pairs within and across switch fabrics of a portable computing device (“PCD”) are described. The system and method includes receiving a client request comprising a master-slave pair and conducting a search for a slave corresponding to the master-slave pair. A route for communications within and across switch fabrics is created and that corresponds to the master-slave pair. One or more handles or arrays may be stored in a memory device that correspond to the created route. Next, bandwidth across the route may be set. After the bandwidth across the newly created route is set, the client request originating the master-slave pair may be serviced using the created route. Conducting the search for the slave may include comparing unique identifiers assigned to each slave in a master-slave hierarchy. The search within and across switch fabrics may also include reviewing a fabric route check table for slaves that can be interrogated within a switch fabric.
摘要:
Requests of a PCD are determined if they are part of a transaction involving a plurality of resources. Next, each resource that is part of the request involving multiple resources is identified. As each resource is identified, a framework manager determines if a resource has completed processing the request directed at it. If the resource has returned a value that it has completed the request, then the framework manager allows the resource to return to an unlocked state while other requests in the transaction are being processed. If the resource has not completed processing and has deferred some of the processing to the end of the transaction, then the resource is added to a deferred unlock list. It is determined if the resource is a dependent on another resource in the current request path. If it is dependent, then the other resource is also placed on the deferred unlock list.
摘要:
A mobile device, a method for managing and exposing a set of performance scaling algorithms on the device, and a computer program product are disclosed. The mobile device includes a multiple-core processor communicatively coupled to a non-volatile memory. The non-volatile memory includes a set of programs defined by a respective combination of a performance scaling algorithm and a set of parameters, a startup program that when executed by the multiple-core processor identifies at least one member of the set of programs suitable for monitoring operation of the mobile device and scaling the performance of an identified processor core and an application programming interface that exposes the set of programs.