摘要:
A method for manufacturing a magnetic write head for perpendicular magnetic recording having a write pole with a very narrow track width and well controlled critical dimensions. The write pole is formed by depositing an electrically conductive seed layer over a substrate, and then depositing a photo resist layer over the seed layer. The photo resist layer is photolithographically exposed and developed to form an opening or trench in the photoreist layer, the opening defining the pattern of the write pole. A magnetic material is then plated into the opening in the photoresist layer. The photo resist layer can then be removed by a chemical lift off, and portions of the seed layer that are not covered by the write pole can be removed by ion milling.
摘要:
A method for constructing a magnetic write head for use in perpendicular magnetic recording, the write head having a write pole with a trailing shield. After forming a magnetic write pole such as by masking and ion milling a magnetic write pole layer, a thin layer of alumina is deposited. This is followed by the deposition of a thin layer of Rh. Then, a thick layer of alumina is deposited, having a thickness that is preferably at least equal to the height of the write pole layer. A chemical mechanical polish is then performed until a portion of the Rh layer over the top (trailing edge) of the write pole is exposed. A material removal process such as ion milling is then performed to remove the exposed Rh layer exposing the thin alumina layer there beneath. The exposed thin alumina layer over the trailing edge of the write pole can then either be removed or left intact to form a portion of a trailing shield gap layer. Another Rh layer can then be deposited to provide a non-magnetic trailing shield gap. A magnetic material is then deposited to form the trailing shield. Since the Rh trailing gap layer is electrically conductive it can also serve as a seed layer for electroplating the magnetic trailing shield.
摘要:
A method for constructing a magnetic write head for use in perpendicular magnetic recording, the write head having a write pole with a trailing shield that wraps around the write pole. The method allows the trailing shield to be constructed with a very well controlled trailing gap thickness and also allows the write pole to be constructed with a well controlled track width and a straight, flat trailing edge. The method includes depositing a magnetic write pole over a substrate and forming a mask structure over the write pole layer. The mask structure includes an end point detection layer that can be removed by reactive ion etching. An ion mill is performed to form a write pole by removing magnetic write pole material that is not covered by the mask layer. A layer of non-magnetic material such as alumina is deposited and is ion milled to expose the end point detection layer. The end point detection layer is then removed by reactive ion etch and a magnetic wrap around trailing shield is deposited.
摘要:
A method of manufacturing a magnetic write head that provides improved pole critical dimension control, such as improved track width control (improved sigma) and improved flare point control. The method involves a combination of several process improvements, such as photolithographically patterning a P2 pole tip defining photoresist frame using a zero print bias and also using a small flash field. The method also involves the use of a non-reactive ion etch to notch the first pole (P1) using the second pole (P2) as a mask.
摘要:
A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method includes forming a write pole using a mask that includes a hard mask layer deposited over the write pole laminate material, and a thick, physically robust image transfer layer. The image transfer layer can be a material such as AlTiO that can be patterned by a reactive ion etching process, but which also resists deformation during processing. This process allows a write pole and wrap-around trailing shield to be constructed at very narrow track widths without the mask deformation and fencing problems experienced by prior art methods.
摘要:
A magnetic write head for perpendicular magnetic data recording. The write head includes a substrate and a magnetic write pole formed on the substrate, the write pole having a trailing edge and first and second sides. A magnetic stitched pole is formed over a portion of the magnetic write pole, the stitched pole having a front edge that defines a secondary flare point. First and second non-magnetic side walls are formed at the first and second sides of the write pole. The non-magnetic side walls extend from the substrate at least to the trailing edge of the write pole in a first region near an air bearing surface and wherein the first and second non-magnetic side walls extend from the substrate to a point between the substrate and the trailing edge, allowing the stitched magnetic pole to extend partially over the sides of the write pole.
摘要:
A method for manufacturing a magnetic write head having a tapered write pole as well as a leading edge taper, and independent trailing and side magnetic shields. The method allows the write pole to be constructed by a dry process wherein the write pole material is either deposited by a process such as sputter deposition or electrically plated and the write pole shape is defined by masking and ion milling. The write pole has a stepped feature that can either be used to provide increased magnetic spacing between the trailing shield and the write pole at a location slightly recessed from the ABS or can be magnetic material that increases the effective thickness of the write pole at a location slightly recessed from the ABS. A bump structure can be further built over that stepped feature to enhance field gradient as well as reduce trailing shield saturation.
摘要:
A method for manufacturing a magnetic write head that has a trailing magnetic shield with a tapered write pole trailing edge, a non-magnetic step layer and a Ru bump and an alumina bump formed at the front of the non-magnetic step layer. The process forms a Ru/alumina side wall at the sides of the write pole, such that the Ru side wall is closest to the write pole. The Ru is removed more readily than the alumina during the ion milling that is performed to taper the write pole. This causes the Ru portion of the side wall to taper away from the write pole rather than forming an abrupt step. This tapering prevents dishing of the trailing edge of the write pole for improved write head performance.
摘要:
A method for manufacturing a magnetic write head having a write pole with a tapered trailing edge step. The resulting tapered trailing edge step maximizes write field at very small bit sizes by preventing the magnetic saturation of the write pole at the pole tip. The method includes depositing a magnetic write pole material and then depositing a magnetic material over the magnetic write pole material. A RIE mask and hard mask are deposited over the magnetic bump material. A resist mask is formed over the RIE mask and hard mask, and a reactive ion etching is performed to transfer the pattern of the resist mask onto the underlying hard mask. Then an ion milling is performed to form a the magnetic step layer with a tapered edge that defines a tapered trailing edge step structure of the write pole.
摘要:
A system according to one embodiment includes a magnetic pole; a bump structure above the pole, the bump structure having a first surface oriented at a first angle between 1° and 89° from a plane of deposition of the pole, and a second surface oriented at a second angle between 1° and 89° from the plane of deposition of the pole, wherein the second angle is greater than the first angle; and a shield above the bump structure. A method according to one embodiment includes forming a bump layer above a magnetic pole; removing a portion of the bump layer for forming a step therein; and milling the bump layer for defining thereon a first surface oriented at a first angle between 1° and 89° from a plane of deposition of the bump layer, and a second surface oriented at a second angle between 1° and 89° from the plane of deposition of the bump layer, wherein the second angle is greater than the first angle.