Abstract:
A displacement measuring system is disclosed. The system may implement a code carrier formed from a data storage medium which includes a relative displacement measurement code channel which is an arrangement of pit lines and bump lines. A composite subsystem may include an optical laser assembly, a signal processing unit, and a power driver, and can scan and decode the code carrier by focusing a laser beam on the code carrier and obtaining a group of radio frequency electric signals from the reflection of the laser beam which represents the bumps and pits of the code carrier. A central control and signal output unit can process the electric signals produced by multiple composite subsystems and output information representing incremental and absolute displacement.
Abstract:
A control method for idling anti-rollback of a pure electric vehicle is provided, where the pure electric vehicle has a vehicle controller, a motor controller, a motor, a brake pedal, a handbrake device, an accelerator pedal, and a power battery. The method makes use of the differences between a pure electric vehicle from conventional cars, and collects the states of individual parts of the vehicle through the vehicle controller, and controls the output of the torque of the motor based on the state information of various control components, to prevent the vehicle located on a slope from rolling back, and makes the vehicle move forward at idle.
Abstract:
A controller for a power converter includes a clamping circuit, a switching circuit and a pulse generator. The clamping circuit is coupled to an input terminal of the controller for detecting a detection signal from a transformer. The switching circuit generates a switching signal to switch the transformer in response to the detection signal for regulating the power converter. A maximum level of the detection signal is clamped to be under a level of a threshold voltage during an off-period of the switching signal. Since the maximum level of the detection signal is clamped and the oscillating energy of the reflected signal is discharged, the speed of detecting the detection signal is increased. Therefore, the regulation of the primary-side controlled power converter can be improved accordingly.
Abstract:
Frequency multipliers having corresponding methods and multifunction radios comprise: N multipliers, wherein N is an integer greater than one; wherein the multipliers are connected in series such that each of the multipliers, except for a first one of the multipliers, is configured to mix a periodic input signal with an output of another respective one of the multipliers; wherein the first one of the multipliers is configured to mix the periodic input signal with the periodic input signal.
Abstract:
The present disclosure describes self-biasing radio frequency circuitry. In some aspects a radio frequency (RF) signal is amplified via a circuit having a first transistor configured to source current to an output of the circuit and a second transistor configured to sink current from the output of the circuit, and another signal is provided, without active circuitry, from the output of the circuit to a gate of the first transistor effective to bias a voltage at the output of the circuit. By so doing, the output of the circuit can be biased without active circuitry which can reduce design complexity of and substrate area consumed by the circuit.
Abstract:
A control circuit of a power converter according to the present invention comprises an output circuit, at least one input circuit and an input-voltage detection circuit. The output circuit generates a switching signal for regulating an output of the power converter in response to at least one feedback signal. The switching signal is coupled to switch a transformer of the power converter. The input circuit samples at least one input signal for generating the feedback signal. The input signal is correlated to the output of the power converter. The input-voltage detection circuit generates an input-voltage signal in response to the level of the an input voltage of the power converter. The input circuit will not sample the input signal when the input-voltage signal is lower than a threshold. The control circuit can eliminate the need of the input capacitor for improving the reliability of the power converter.
Abstract:
A radio frequency transmitting system includes a programmable amplifier, a power amplifier, a power detector, and a calibration module. The programmable amplifier is configured to amplify an input signal to generate an amplified signal. The power amplifier is configured to output a transmit signal in response to the amplified signal. The transmit signal has a transmit power. The power detector is configured to generate a power measurement in response to the transmit power. The calibration module is configured to implement a plurality of feedback loops to adjust a gain of the programmable amplifier in response to a difference between the power measurement and a desired transmit power. The calibration module is configured to select one of the plurality of feedback loops in response to the desired transmit power.
Abstract:
The present disclosure is directed to a portable device for producing standardized assay areas on conductive substrates coated with organic coating layers. The present disclosure is directed to a process for producing standardized assay areas using the portable device. The portable device and the process can be used to produce assay areas for corrosion evaluation tests at an accelerated rate. The portable device and the process are particularly useful for producing standardized assay areas on large or immobile structures or objects.
Abstract:
The present disclosure is directed to a device for producing standardized assay areas on conductive substrates coated with organic coating layers. The device can be used to produce standardized assay areas for corrosion evaluation tests at an accelerated rate.
Abstract:
The present invention provides a control circuit for dimming LED lighting. The control circuit comprises a voltage divider, a controller and an adaptive bleeder. The voltage divider receives an input voltage from an input terminal to generate a dimming signal. The controller generates a switching signal in response to the dimming signal. The controller further generates a control signal in response to the input voltage. The adaptive bleeder receives the control signal and draws a bleeder current from the input terminal in response to the control signal.