Abstract:
The present disclosure provides a touch substrate and a display device. The touch substrate includes: a base substrate; a plurality of rows of touch electrodes disposed on the base substrate; and a plurality of signal lines disposed on the base substrate. The plurality of rows of touch electrodes are continuously disposed on the base substrate in a direction perpendicular to a row direction, sides of any tow adjacent rows of touch electrodes opposite to each other are matched in a concave-convex manner, and the plurality of signal lines are disposed in regions between respective touch electrodes.
Abstract:
The present disclosure provides a shift register circuit and a method for driving the same, a gate driving circuit, and a display apparatus. The shift register circuit comprises an input module, configured to pull up a potential at a first node; an output module, configured to pull up a potential at an output when the potential at the first node is at a high level; a pull-up module, configured to periodically pull up a potential at the second node by using current from a high-level bias voltage line; a reset module, configured to pull down the potential at the first node under the control of a signal; and a pull-down module, configured to continuously pull down the potential at the second node before the potential at the first node is pulled down, and pull down potentials at the first node and the output when the potential at the second node is at a high level.
Abstract:
Embodiments of the invention disclose a touch display panel, a method for determining touch position and a display device. The touch display panel includes a TFT array substrate having gate lines and an opposite substrate having a black matrix. At least one of the gate lines is used as a touch scanning line, at least one touch sensing line is provided on the black matrix of the opposite substrate, and a touch capacitor is formed at an intersection between the touch scanning line and the touch sensing line.
Abstract:
An array substrate, a method for fabricating the same, and a display device are provided. A metal shielding layer is electrically connected with a common electrode. A first connection part used for electrically connecting the metal shielding layer and the common electrode is arranged in the same layer as a source/drain electrode, and is electrically connected with the metal shielding electrode by means of a via penetrating the first insulating layer and the buffer layer. A storage capacitor is formed between an active layer and the metal shielding layer, increasing capacitance of the array substrate. The first connection part and the source/drain electrode which are arranged in the same layer can be formed by performing a patterning process once, thus reducing the fabricating flow, simplifying the fabricating process, saving the fabricating cost, and decreasing the fabricating time.
Abstract:
An array substrate, a touch screen panel and a display device are provided. The array substrate includes a plurality of gate lines, a plurality of data lines, a plurality of touch sensing units, and each touch sensing unit comprises a touch scanning line, a touch sensing line, a first transistor and a sensing electrode, the touch scanning line is connected with a gate electrode and a drain electrode of the first transistor and the sensing electrode is connected with a source electrode of the first transistor; the touch sensing line and the sensing electrode are provided in different layers, spaced apart by an insulating layer and have an overlapping region. This array substrate decreases areas of non-display regions on the array substrate, increases aperture ratio of the touch screen panel and in turn enhances brightness of the display device.
Abstract:
Embodiments of the invention disclose a touch display panel, a method for determining touch position and a display device. The touch display panel includes a TFT array substrate having gate lines and an opposite substrate having a black matrix. At least one of the gate lines is used as a touch scanning line, at least one touch sensing line is provided on the black matrix of the opposite substrate, and a touch capacitor is formed at an intersection between the touch scanning line and the touch sensing line.
Abstract:
Provided is a fingerprint sensor, including: a substrate; a plurality of photosensitive devices disposed on the substrate; a light-emitting module disposed on a side, distal to the substrate, of the plurality of photosensitive devices; and a protective cover disposed on a side, distal to the substrate, of the light-emitting module, wherein the protective cover is provided with a plurality of conductive structures electrically connected to the light-emitting module, the plurality of conductive structures being in one-to-one correspondence with the plurality of photosensitive devices, and an orthographic projection of each conductive structure onto the substrate at least partially being overlapped with an orthographic projection of the photosensitive device corresponding to the conductive structure onto the substrate.
Abstract:
A touch display substrate and a display device are provided. The touch display substrate includes a plurality of sub-pixel units (10), data lines (20) and touch signal lines (30). For any two adjacent rows of sub-pixel units, the sub-pixel unit (10) in one row of sub-pixel units is staggered in a row direction with respect to the sub-pixel unit (10) in the other row of sub-pixel units adjacent to the one row of sub-pixel units by a distance of X sub-pixel units (10), and 0
Abstract:
An electronic apparatus and a texture recognition device are described that relate to image recognition technologies. The texture recognition device includes a sensing layer, a transparent contact layer, a light shielding layer, and a plurality of light sources. The sensing layer includes a plurality of photosensitive units distributed in an array; the transparent contact layer is disposed on a side of the sensing layer; the light shielding layer is disposed between the sensing layer and the transparent contact layer, and including a plurality of light transmission portions arranged in an array; and the light sources are distributed in an array on a side of the light shielding layer close to the transparent contact layer, and light emitted by the light sources is reflected by the transparent contact layer and transmitted to the photosensitive units by passing through the light transmission portions.
Abstract:
There are provided a touch circuit, a touch panel and a display apparatus. The touch circuit comprises: an input module (1), a reset module (2), a pull-up module (3), a pull-down module (4), a pull-down control module (5) and a touch signal output module (6), wherein the input module is configured to provide a signal of the first reference signal terminal to the first node; the reset module is configured to provide a signal of the second reference signal terminal to the first node; the pull-up module is configured to provide a signal of the first clock signal terminal to the control signal output terminal; the pull-down module is configured to provide a signal of the third reference signal terminal to the control signal output terminal; the pull-down control module is configured to ensure a potential of only one node of the first node and the second node is a first potential at a same moment; the touch signal output module is configured to output a high frequency signal or a common voltage signal to a touch signal output terminal under the control of the control signal output terminal. The touch circuit, the touch panel and the display apparatus have a simple structure, and relatively low power consumption.