Abstract:
A method and apparatus of selecting which of a plurality of receiver chains of a mobile unit to receive wireless signals, is disclosed. One method includes measuring a first receive signal quality while all of the plurality of receiver chains are receiving wireless signals, and measuring a second receive signal quality while a subset of the plurality of receiver chains are receiving wireless signals. The subset of the plurality of receiver chains are selected to receive wireless signal unless the first receive signal quality is a threshold better than the second receive signal quality. If the first receive signal quality is a threshold better than the second receive signal quality then all the plurality of receiver chains are selected to receive wireless signals.
Abstract:
Embodiments provide systems and methods for enabling a first transceiver to learn beamforming weights (e.g., Eigen beamforming weights) to a second transceiver, without any pilot signaling or explicit beamforming weight signaling from the second transceiver. In another embodiment, beamforming weight vectors to enable a multi-symbol spatial rate can be learned by the first transceiver.
Abstract:
Embodiments recognize that in MIMO and M-MIMO systems, physical antennas tend to be closely spaced to each other (e.g., a grid). As a result, a spatial correlation typically exists between physical antennas as well as between transmissions from logical antenna ports. Embodiments exploit this characteristic to reduce the amount of pilot signaling needed to enable downlink channel estimation. Specifically, embodiments limit pilot signaling to only a subset of supported logical antenna ports and rely on spatial correlation information to interpolate channels from logic antenna ports for which no pilot signaling is used.
Abstract:
Multiple input multiple output systems using a transmit precoder codebook designed for a four-transmitter (4Tx) antenna configuration are described. The 4Tx antenna configuration is an attractive option for base stations in cellular network environments and it is desirable to use a transmitter precoder codebook that provides sufficient granularity in typical operating scenarios, and to address various antenna configurations. In an embodiment, the transmit precoder codebook can be used for a variety of transmit antenna configurations including uniform linear antenna arrays, cross-polarized antenna arrays and uncorrelated antenna arrays. In another embodiment, the transmit precoder codebook is a two-component codebook, with a first precoder component signaled at a first rate and a second precoder component signaled at a second higher rate.
Abstract:
In a communications network with carrier aggregation (CA), embodiments enable the network to advertise to a supported wireless device not only whether or not aggregated component carriers allocated to the wireless are intra-band adjacent but further whether or not the allocated component carriers are collocated. Embodiments further enable the wireless to advertise its CA capabilities including the support of adjacent collocated CA and/or non-adjacent collocated CA. Embodiments thus provide systems/methods for the exploitation of special conditions provided by adjacent collocated component carriers to reduce processing complexity and power consumption for certain types of wireless device transmitter/receiver architectures and to support intra-band adjacent CA for other types of UE transmitter/receiver architectures.
Abstract:
A framework for enabling a user equipment (UE) to apply interference suppression processing during network conditions that are favorable to interference suppression or that are known is provided. The framework includes an interference suppression (IS) time and frequency (time/frequency) zone, which can be scheduled by a serving base station and signaled to the UE. In an embodiment, the serving base station coordinates with the interfering base station(s) to create a network condition favorable to interference suppression at the UE during the IS time/frequency zone. In another embodiment, the serving base station opportunistically schedules the IS time/frequency zone for the UE whenever it determines favorable transmission parameters being used or scheduled for use by the interfering base station(s). The UE applies interference suppression processing within the IS time/frequency zone, thereby improving receiver performance. Outside the time/frequency zone, the UE may disable interference suppression processing so as not to degrade receiver performance.
Abstract:
Antenna systems and methods for Massive Multi-Input-Multi-Output (MIMO) (M-MIMO) communication are provided. Antennas systems include a M-MIMO transmitter architecture with a hybrid matrix structure. The hybrid matrix structure protects against transmit path component failures and ensures that a spatial rate of the MIMO transmitter is not degraded by the failures. Antenna systems and methods also include antenna selection schemes for selecting a subset of antennas from a plurality of antennas to transmit to a receiver.
Abstract:
Where receiver performance at a User Equipment (UE) is similar using a coarse precoder codebook as using a fine resolution precoder codebook, the signaling of a two-component precoder codebook is modified such that a precoder codeword is signaled to the UE in only a portion of the physical resources allocated for precoder codeword signaling to the UE. The remaining portion of the allocated physical resources is used to signal control information to improve the UE's performance.
Abstract:
A multiple input multiple output (MIMO) antenna system is implemented for communications in a wireless device. MIMO beamforming techniques are utilized to improve communications, and may be utilized in full-duplex mode. Techniques include the formation of beamforming patterns having orthogonal polarizations to one another at each communication device, but having matching polarization between transmit/receive pairs located at each respective communication device. Techniques also include the formation of beamforming patterns in a direction towards another communication device to maximize transmit power in that direction while inducing nulls in the beamforming pattern to reduce self-interference coupling via antennas configured for reception. Full-duplex communications are improved through monitoring of the self-interference coupling and adapting the beamforming patterns to reduce it. Beamforming vectors may be generated by solving a cost function that may include an additional constraint of reduction of self-interference coupling.
Abstract:
Embodiments enable cooperative transmissions from a group of cells (can include the serving cell and one or more neighboring cells) to a user equipment (UE). The cooperative transmissions emulate Hybrid Automatic Repeat Request (HARQ) transmissions to the UE. Specifically, when the UE is experiencing high interference, the UE's serving cell can create a transmit incremental redundancy (IR) group for the UE, which is used to transmit information in a HARQ-like fashion to the UE. Because interference is reduced, the UE can decode the information at a lower coding rate and higher coding gain.