Abstract:
The present invention is a method and device for identifying recording media in a printer. The invention utilizes fine structure of the media revealed by illumination from one or more directions to distinguish among different kinds of plain papers, coated papers, such as glossy papers, and transparency films. Multiple light sources at different incidence and/or orientation angles apply light on the test surface, and scattered light is converted into signals and then analyzed. Various metric and analysis techniques can be applied to the signals to determine the media type.
Abstract:
A method and system allow a hand-held digital camera to access and store large volumes of digital image data utilizing a wireless communications link between a host computer and the camera. In an embodiment of the invention, imaging optics and a photosensor array capture image data that represents an image of a subject. A transceiver integrated into the hand-held digital camera then transmits the image data to a host computer via a wireless communications link. The host computer stores the image data, or a copy of the image data, and retransmits related image data or, alternatively, the same image data back to the hand-held digital camera via the wireless communications link. Once the image data is received by the hand-held digital camera, an electronic image is formed by a display device that is integrated into the camera. The host computer may process the digital image data into enhanced digital image, thereby enabling the camera to display an enhanced electronic image of a subject. The communications link between the hand-held digital camera and the host computer can transfer data at a sufficiently high bandwidth to provide virtually real-time feedback to a computer operator.
Abstract:
An optical encoder can detect relative movement of a target without the use of a systematic pattern on the target. Natural features of different areas of the target are imaged by a photosensor array. The photosensor array generates a sequence of data frames of the imaged areas, and a processor processes patterns in the data frames of the imaged areas to detect a relative motion or displacement of the target. The processor can determine incremental relative motion or rate of relative motion.
Abstract:
The present invention is generally directed to a system for taking displacement measurements of an object. The invention utilizes the Moiré effect to take precise displacement measurements of an object. In this regard, a visible pattern is disposed on an object, and a plurality of photosensors are uniformly spaced apart from the visible pattern. Importantly, the spacing between the photosensors is slightly different than the spacing between light and dark lines forming a projection or image of the visible pattern. This allows the invention to utilize the Moiré effect to accurately compute precise displacements or movements of the object. In this respect, electrical signal generated by the photosensor array will embody a repeating envelope pattern resulting from the difference in the pitch of the photosensors and the pitch of the projection or image of the visible pattern. This envelope has a spatial frequency that is significantly lower than the fundamental repetition frequency of either the image (or projection) of the visible pattern or the photosensor array, where these frequencies of the image or projection of the visible pattern and the photosensor array are equal to the reciprocal of the distances separating adjacent repetitions of pattern within the image of the visible pattern or the reciprocol of the pitch of adjacent photosensor elements respectively. Thus, small lateral motion of the object bearing the visible pattern, made parallel to the direction of the repetition of the repeating patterns, produces a relatively large shift in the position of the signal envelope which has a lower spatial frequency.
Abstract:
This invention is a power efficient illuminator and illumination method that provides control of spatial distributions of power density, ray angles, wavelength(s), polarization and temporal behavior (even coherence) to meet specific design specifications across a prescribed target zone (i.e., line, area or volume). This invention utilizes an array (or set) of radiant power or energy sources which can be selected or varied in kind(s), form(s), size(s) number and arrangement. Ancillary reflective, refractive or diffractive optical elements may be used for additional control. The ancillary optics may be one or more shared single optic or may be one or more entire array(s) of elements matched to the array of sources. The ancillary optics may be refractive or reflective, passive or active, self-focusing, or diffractive (e.g., holographic, binary or multistep). The set of individual sources are systematically distributed spatially, and driven individually or together. Each source in the set has a controlled divergence, each emitting a narrowly divergent beam with the beam axes aligned parallel to one another, aligned to converge at a common point, or aligned to diverge from a common (virtual) point. The individual source emitters comprising the set can either be all identical to one another or be made different from one another in a spatially graded way to meet design objectives for specific distribution patterns. The set of sources can be made up of an assembly of otherwise independent sources or all manufactured together in a monolithic array in a common manufacturing sequence (although perhaps with controlled process gradients). The set of sources can be configured in an array, regularly spaced to form a spatial grid, irregularly spaced, or in combination. In a preferred embodiment, the set of sources (emitters) is a monolithic array of vertical cavity surface emitting laser diodes.
Abstract:
A scanning device and method of forming a scanned electronic image include an imaging sensor and at least one navigation sensor. In the preferred embodiment, the imaging sensor is a linear array of sensor elements, with a two-dimensional navigation sensor array at each end. The scanning device has three degrees of freedom, since position information from the navigation sensors allows manipulation of an image signal from the imaging sensor to reduce distortion artifacts caused by curvilinear scanning. Acceptable sources of the position information include printed matter and contrast variations dictated by variations in the inherent structure-related properties of the medium on which the scanned image is formed. Illumination for optimal operation of the navigation system may be introduced at a grazing angle in some applications or in the normal to a plane of the original in other applications, but this is not essential.
Abstract:
An automated cassette handler is disclosed for transporting a cassette containing integrated circuit wafers between first and second elevators in a standardized mechanical interface (SMIF) system for integrated circuit processing. The handler is adapted to grip and transport the cassette while positively pushing the wafers into the cassette.
Abstract:
A method for measuring the length of segments of moving chain includes the steps of measuring the velocity of the chain by timing the interval a point on the chain moves a known distance and timing the interval between the sensing of one end of the segment at one point and the sensing of the opposite end of the segment at another point a known distance from said one point. A method is disclosed to track each carrier in a conveyor system by continuously measuring segments of the chain and maintaining a running total of the chain length between each carrier and a reference point. Apparatus in the conveyor system, including a chain length measuring station, is disclosed.
Abstract:
Security systems may include sensing, networked communications, stealth, alarms, and countermeasures, any or all of which may adapt to threats. These systems may also include armor and barriers of concrete and/or steel. They can adapt to severity of threats, weather, and/or other situational aspects. They can anticipate at least some threats in order to obtain early warning and react more quickly to those threats. They can adapt by altering their configurations, including alterations in communication networking structures and methods, and changes in data-storage and processing duties at processing nodes. Defensive and/or offensive countermeasures can be employed to deter, confuse, trap, and/or disable terrorists. The systems are capable of self-maintenance, self-healing, and self-restoration as threats subside. The systems can include subsystems capable of autonomous operation. At least some of the systems and/or their subsystems are capable of allocating power among subsystems, and of regulating bandwidth utilizations.
Abstract:
Security systems may include sensing, networked communications, stealth, alarms, and countermeasures, any or all of which may adapt to threats. These systems may also include armor and barriers of concrete and/or steel. They can adapt to severity of threats, weather, and/or other situational aspects. They can anticipate at least some threats in order to obtain early warning and react more quickly to those threats. They can adapt by altering their configurations, including alterations in communication networking structures and methods, and changes in data-storage and processing duties at processing nodes. Defensive and/or offensive countermeasures can be employed to deter, confuse, trap, and/or disable terrorists. The systems are capable of self-maintenance, self-healing, and self-restoration as threats subside. The systems can include subsystems capable of autonomous operation. At least some of the systems and/or their subsystems are capable of allocating power among subsystems, and of regulating bandwidth utilizations.