Abstract:
In some embodiments, an actuation system includes a an actuator assembly, a yoke, and a control rod. The actuator assembly comprises a first actuator. The first actuator is configured to extend in a first direction and retract in a second direction opposite of the first direction. The yoke is coupled to the first actuator at a first actuator end proximate to the first direction. The control rod is coupled to the yoke at a first control rod end and extends in the second direction past the actuator assembly to a second end in mechanical communication with an output device.
Abstract:
According to one embodiment, a rotor blade rotation system includes a hub, a rotor blade in mechanical communication with the hub and pivotable about an axis of rotation, a swashplate, a pitch link, and an actuator. The swashplate includes a rotating portion and a non-rotating portion. The pitch link is coupled to the rotating portion of the swashplate and in mechanical communication with the rotor blade. The actuator is coupled to the non-rotating portion of the swashplate and operable to reposition the swashplate from a first position to a second position such that the pitch links pivot the rotor blade from a deployed position to a folded position.
Abstract:
A rotorcraft capable of a hover mode and a forward cruise mode including a fuselage, a first electric propulsion system, a second electric propulsion system, and an electric power control unit to control power to the first and second electric propulsion systems in the hover and forward cruise modes. The first electric propulsion system is a tip jet cold flow system that imparts rotation on a pair of rotor blades disposed above a top surface of the fuselage, and a first electric motor configured to drive the tip jet cold flow system. The second electric propulsion system includes a propeller disposed in the rear of the fuselage and a second electric motor configured to drive the propeller.
Abstract:
According to one embodiment, a linear control motor includes a first permanent magnet, a coil, a first magnetic material, a shaft, and a first non-magnetic material. The first non-magnetic material is disposed between at least one of the movable components and at least one of the static components and operable to prevent physical contact between at least one of the movable components and at least one of the static components.
Abstract:
According to some embodiments, a rotorcraft includes a secondary rotor control system located proximate to the empennage of the rotorcraft. The secondary rotor control system includes at least one hydraulic pump and at least one hydraulic actuator. The at least one hydraulic pump is located proximate to the empennage. The at least one hydraulic actuator is located proximate to the empennage and configured to adjust at least one operating characteristic of the at least one secondary rotor blade.
Abstract:
A speed control assembly includes an input drive shaft coupled to a first gear subassembly having a rotatable gear, a second gear subassembly coupled to an output drive shaft, and a linkage coupling the first and second gear subassemblies, wherein the input drive shaft, the first and second gear subassemblies, and the linkage are configured such that a rotational speed of the rotatable gear adjusts a ratio of a rotational speed of the output drive shaft to a rotational speed of the output drive shaft. In some embodiments, the first gear subassembly includes a sun gear coupled to the input drive shaft, one or more planet gears, and a ring gear as the rotatable gear. In some embodiments, the second gear subassembly includes a sun gear coupled to the output drive shaft, one or more planet gears, and a fixed ring gear.
Abstract:
A speed control assembly includes an input drive shaft coupled to a first gear subassembly having a rotatable gear, a second gear subassembly coupled to an output drive shaft, and a linkage coupling the first and second gear subassemblies, wherein the input drive shaft, the first and second gear subassemblies, and the linkage are configured such that a rotational speed of the rotatable gear adjusts a ratio of a rotational speed of the output drive shaft to a rotational speed of the output drive shaft. In some embodiments, the first gear subassembly includes a sun gear coupled to the input drive shaft, one or more planet gears, and a ring gear as the rotatable gear. In some embodiments, the second gear subassembly includes a sun gear coupled to the output drive shaft, one or more planet gears, and a fixed ring gear.
Abstract:
In some embodiments, a rotorcraft flight control actuator includes a driving member configured to receive mechanical energy from a power source, a driven member, a magnetorheological (MR) fluid disposed between the driving member and the driven member and configured to transmit a variable amount of mechanical energy from the driving member to the driven member, an output member configured to be coupled between the driven member and a flight control device of a rotor system, and a magnetic circuit configured to deliver a magnetic field towards the MR fluid, the magnetic circuit configured to vary the strength of the magnetic field in response to inputs.
Abstract:
According to one embodiment, a stability augmentation system includes a master linkage, a stability augmentation motor, and three linkages. A first linkage is coupled to the master linkage and operable to receive movements representative of pilot commands from a pilot command system. A second linkage is coupled between the stability augmentation motor and the master linkage and operable to receive movements representative of augmentation commands from the stability augmentation motor. A third linkage is coupled to the master linkage and operable to transmit movements representative of blade position commands to a blade control system in response to the movements representative of pilot commands and the movements representative of augmentation commands.
Abstract:
According to some embodiments, a rotorcraft includes a secondary rotor control system located proximate to the empennage of the rotorcraft. The secondary rotor control system includes at least one hydraulic pump and at least one hydraulic actuator. The at least one hydraulic pump is located proximate to the empennage. The at least one hydraulic actuator is located proximate to the empennage and configured to adjust at least one operating characteristic of the at least one secondary rotor blade.