Abstract:
An impact resistant assembly for a handheld fluorescent task lamp, comprising a housing configured as a hollow tubular handle; a generally tubular lens body molded of a substantially clear plastic material, seated in a recess within a first end of the housing and enclosing at least one compact fluorescent bulb; an elongated spine member extending from a rearward side of the first end of the housing approximately parallel to a longitudinal axis thereof and configured for slidingly supporting the lens body on a track formed along a rearward portion of the lens body; and a resilient bulkhead disposed within a distal portion of the lens body for cushioning a distal end of the at least one compact fluorescent bulb.
Abstract:
A handheld fluorescent task lamp comprising a housing assembly having a housing and a tubular lens body enclosing compact fluorescent bulbs, an elongated spine configured for slidingly supporting the lens body, and a resilient bulkhead for cushioning the compact fluorescent bulbs in the lens body; an electronic ballast circuit within the housing comprising a power supply, a self-starting electronic driver circuit operable to start and run at least first and second CFL bulbs; a bulb accommodation circuit that enables operation of the electronic ballast circuit with either starter type or non-starter type and regardless whether one or both CFL bulbs are connected to the driver circuit; and an illumination assembly, wherein the CFL bulbs are oriented with respect to each other such that an enhanced forward emission field is provided.
Abstract:
A battery operated fluorescent lamp is disclosed, which is operable from the battery while the battery is being recharged, comprising a tubular housing configured as a handle grip at one end and a cylindrical lens portion at the other end. The tubular housing lockably connects to a battery pack. The cylindrical 3030 lens portion encloses a miniature fluorescent bulb. The electrical circuitry, enclosed within the handle grip and alternately operable from either 120 VAC or 12 VDC, includes a converter circuit, a battery charging circuit, and a fluorescent lamp ballast circuit. The battery pack is electrically coupled to simultaneously receive charging current from an output of the charging circuit and to deliver DC supply voltage to the fluorescent lamp ballast circuit without the occurrence of a net discharge of the battery pack.
Abstract:
An LED lighting array is disclosed wherein a plurality of light emitting devices disposed in at least first and second columns are mounted on a planar mounting surface to form an emission plane. The emission axes of all the LEDs in a first column are parallel with each other and lie in a first plane. The emission axes of the LEDs in an adjacent, second column are also parallel, but a second plane containing the emission axes of the second column is disposed at a predetermined, non-zero angle with respect to the first plane. The non-zero angle is a function of the LED beam width and the distance to a lighting target. This configuration of the LEDs provides an optimum balance at a predetermined target distance between the size of the area illuminated and the brightness of the illumination of the target. In one aspect of the invention the LED lighting array includes at least first, second and third columns of LEDs. In another aspect of the invention an LED task light includes a transparent tube and an LED lighting array disposed within the tube. An electrical drive circuit associated with the mounting substrate within the tube provides pulsed direct current for driving the LED's.
Abstract:
A handheld fluorescent task lamp comprising a housing assembly having a housing and a tubular lens body enclosing compact fluorescent bulbs, an elongated spine configured for slidingly supporting the lens body, and a resilient bulkhead for cushioning the compact fluorescent bulbs in the lens body; an electronic ballast circuit within the housing comprising a power supply, a self-starting electronic driver circuit operable to start and run at least first and second CFL bulbs; a bulb accommodation circuit that enables operation of the electronic ballast circuit with either starter type or non-starter type and regardless whether one or both CFL bulbs are connected to the driver circuit; and an illumination assembly, wherein the CFL bulbs are oriented with respect to each other such that an enhanced forward emission field is provided.
Abstract:
A battery operated fluorescent lamp is disclosed, which is operable from the battery while the battery is being recharged, comprising a tubular housing configured as a handle grip at one end and a cylindrical lens portion at the other end. The tubular housing lockably connects to a battery pack. The cylindrical 3030 lens portion encloses a miniature fluorescent bulb. The electrical circuitry, enclosed within the handle grip and alternately operable from either 120 VAC or 12 VDC, includes a converter circuit, a battery charging circuit, and a fluorescent lamp ballast circuit. The battery pack is electrically coupled to simultaneously receive charging current from an output of the charging circuit and to deliver DC supply voltage to the fluorescent lamp ballast circuit without the occurrence of a net discharge of the battery pack.
Abstract:
A plurality of compact light emitting assemblies is mounted on a frame configured as a heat sink that provides a structural platform and a thermal management component. The frame further ensures proper alignment of the light emitting devices to aim the individual light emitting assemblies in a direction that provides a predetermined overlap of the individual light beams resulting in a uniform, high brightness pattern on a target surface. The source of current connected to the light emitting devices may also be mounted on the frame. The compact light emitting module thus provided is readily adaptable to a variety of compact, high performance lighting product configurations.
Abstract:
A single combination task lamp and flashlight instrument, providing separate flood and spot light beams, independently controlled in a three-state sequence by simple push button switches. The two kinds of light beams are produced by separate arrays of compact light emitting devices. both arrays are driven by a single, rechargeable battery powered electrical circuit that provides separate, regulated constant currents to the respective arrays of LEDs. The optics and electronics are constructed in a single, ruggedized, compact module. The module is enclosed within an elongated handle that positions the center of mass for optimum balance of the instrument and the control switches for convenient operation according to the sense of touch.
Abstract:
A unitary lens and light emitting device combination is provided that produces a highly uniform beam of light, corrected for distortions and gaps in illumination, throughout a full output beam width. The unitary lens incorporates all of the necessary optical surfaces to provide the output beam, including a pattern-correcting spherical refracting surface that smooths intensity variations in the overall illumination pattern.