Abstract:
The present disclosure relates generally to methods and devices for closing and/or sealing an opening in a vessel wall and/or an adjacent tissue tract. In some cases, the device includes a sheath having a distal end that can expand radially as needed. In some cases, the distal portion of the sheath is weakened so that it may tear in a predetermined manner. In some cases, the distal portion of the sheath is weakened so that it may deform plastically in a predetermined manner. In some cases, the distal portion of the sheath or the entire sheath may be folded so that it unfolds in a predetermined manner. In general, each of these sheaths may have a relatively small introduction profile, may have a distal portion that can expand to a larger diameter than the introduction profile during use, and can be collapsed again to a smaller profile for removal.
Abstract:
A filter system, comprising an elongate filter body defining a lumen and having a proximal end and a distal end. A valve can be provided defining a lumen and having a reversibly sealable opening for unidirectional flow of a fluid through the lumen. The valve can be adjoined proximal the distal end of the elongate filter body, wherein the elongate filter body filters the unidirectional flow of the fluid passing through the lumen of the valve and the lumen of the elongate filter body.
Abstract:
A catheter includes a flexible shaft having a lumen arrangement and a length sufficient to access a target vessel of a patient. A balloon at the distal end of the shaft is fluidly coupled to the lumen arrangement. The balloon body comprises a first material and a second material different from the first material. The second material comprises a hydrophilic polymer that becomes electrically conductive in response to absorption of the conductive fluid. The fluid conductive regions facilitate perfusion of the conductive fluid through the balloon body to an inner wall of the target vessel during ablation of perivascular tissues. A cooling arrangement is configured for one of receiving a thermal transfer fluid from the lumen arrangement or facilitating perfusion of blood passing through the target vessel to cool the balloon body during ablation of the perivascular tissues.
Abstract:
Methods of installing a vascular closure device, the vascular closure device adapted for sealing an opening in biological tissue and comprising an anchor, a compressible plug, a cinch and a suture, the method comprising the steps of providing an insertion sheath, inserting the insertion sheath into the opening in the biological tissue, providing a device sheath having the vascular closure device preloaded therein with a proximal portion of the suture attached to the device sheath, subsequent to the step of inserting the insertion sheath, inserting the device sheath into the insertion sheath, and retracting the insertion sheath and device sheath simultaneously, wherein during the retraction, the insertion sheath and the device sheath are fixed to one another and devices adapted to the methods.
Abstract:
Systems and methods for monitoring and performing tissue modulation are disclosed. An example system may include an elongate shaft having a distal end region and a proximal end and having at least one modulation element and one sensing electrode disposed adjacent to the distal end region. The sensing electrode may be used to determine and monitor changes in tissue adjacent to the modulation element.
Abstract:
A cardiac valve with a support frame having a first end member and a second end member opposing the first end member in a substantially fixed distance relationship, and a cover extending over the support frame to allow for unidirectional flow of a liquid through the valve.
Abstract:
An apparatus and method for closing an opening in a blood vessel wall is disclosed. The apparatus includes at least one member which is extended through a tissue tract formed through the epidermis and subcutaneous layer of skin and through the opening in the blood vessel. The member includes a proximal end and a distal end with the distal end being positionable proximate to the opening in the blood vessel wall. A positive electrode is positioned next to the distal end with a negative electrode being positioned next to the proximal end When the electrodes are energized an electric field is created therebetween, blood cells are attracted to the positive electrode, and a thrombus is formed at the opening in the blood vessel wall. The member may include a balloon at the distal end to temporarily occlude blood flow from the blood vessel to the tissue tract to facilitate formation of the thrombus. In addition, the shape of the balloon may be tailored to facilitate the formation of the thrombus including, but not limited to, the creation of pockets and self-supporting balloons
Abstract:
A catheter is configured to access a renal artery. A lumen of the catheter's shaft is dimensioned to receive a flexible actuation member which extends between the shaft's proximal and distal ends. The actuation member is moveable within the lumen and subject to elastic deformation, friction, and/or whip along its length. A flexible support member is coupled to a distal end of the actuation member and extendible beyond a distal tip of the shaft. An RF ablation electrode at a distal end of the support member is configured to ablated perivascular renal nerve tissue. A position converter at the distal end of the shaft is configured to convert movement of the actuation member into one or both of controlled rotational and axial movement of the support member and electrode to one of a multiplicity of stable circumferential positions substantially free of elastic deformation, friction, and/or whip impacting actuation member movement.
Abstract:
A replacement heart valve assembly has a stent frame and a replacement valve. The replacement valve has a plurality of leaflets and a valve frame. The leaflets are attached to the valve frame. Further, the assembly has a plurality of suspension struts attached to the stent frame and the valve frame. The valve frame is suspended within the stent frame via the suspension struts. In some embodiments, the assembly further has a sealing member attached to the stent frame to prevent leakage around the replacement heart valve assembly.
Abstract:
Systems for nerve and tissue modulation are disclosed. An example system may include a first elongate element having a distal end and a proximal end and having at least one nerve modulation element disposed adjacent the distal end. The nerve modulation element may be positioned or moveable to target a particular target region. The nerve modulation element may be an ultrasound transducer. The nerve modulation element may be configured to be operated at a low intensity to provide a thermal nerve block or a high intensity to effect tissue modulation.