Abstract:
A replacement heart valve assembly has a stent frame and a replacement valve. The replacement valve has a plurality of leaflets and a valve frame. The leaflets are attached to the valve frame. Further, the assembly has a plurality of suspension struts attached to the stent frame and the valve frame. The valve frame is suspended within the stent frame via the suspension struts. In some embodiments, the assembly further has a sealing member attached to the stent frame to prevent leakage around the replacement heart valve assembly.
Abstract:
A replacement heart valve assembly has a stent frame and a replacement valve. The replacement valve has a plurality of leaflets and a valve frame. The leaflets are attached to the valve frame. Further, the assembly has a plurality of suspension struts attached to the stent frame and the valve frame. The valve frame is suspended within the stent frame via the suspension struts. In some embodiments, the assembly further has a sealing member attached to the stent frame to prevent leakage around the replacement heart valve assembly.
Abstract:
Some embodiments of an electrical stimulation system employ wireless electrode assemblies to provide pacing therapy, defibrillation therapy, or other stimulation therapy. In certain embodiments, the wireless electrode assemblies may include a guide wire channel so that each electrode assembly can be advanced over a guide wire instrument through the endocardium. For example, a distal tip portion of a guide wire instrument can penetrate through the endocardium and into the myocardial wall of a heart chamber, and the electrode assembly may then be advanced over the guide wire and into the heart chamber wall. In such circumstances, the guide wire instrument (and other portions of the delivery system) can be retracted from the heart chamber wall, thereby leaving the electrode assembly embedded in the heart tissue.
Abstract:
A replacement heart valve assembly has a stent frame and a replacement valve. The replacement valve has a plurality of leaflets and a valve frame. The leaflets are attached to the valve frame. Further, the assembly has a plurality of suspension struts attached to the stent frame and the valve frame. The valve frame is suspended within the stent frame via the suspension struts. In some embodiments, the assembly further has a sealing member attached to the stent frame to prevent leakage around the replacement heart valve assembly.
Abstract:
Devices, systems, and methods provide for intravascular or extravascular delivery of renal denervation therapy and/or renal control stimulation therapy. Wireless vascular thermal transfer apparatuses and methods provide for one or both of production of current densities sufficient to ablate renal nerves and terminate renal sympathetic nerve activity, and production of current densities sufficient to induce endothelium dependent vasodilation of the renal artery bed. A common apparatus may be used for both renal ablation and control of renal function locally after renal denervation.
Abstract:
A replacement heart valve assembly has a stent frame and a replacement valve. The replacement valve has a plurality of leaflets and a valve frame. The leaflets are attached to the valve frame. Further, the assembly has a plurality of suspension struts attached to the stent frame and the valve frame. The valve frame is suspended within the stent frame via the suspension struts. In some embodiments, the assembly further has a sealing member attached to the stent frame to prevent leakage around the replacement heart valve assembly.
Abstract:
A replacement heart valve assembly has a stent frame and a replacement valve. The replacement valve has a plurality of leaflets and a valve frame. The leaflets are attached to the valve frame. Further, the assembly has a plurality of suspension struts attached to the stent frame and the valve frame. The valve frame is suspended within the stent frame via the suspension struts. In some embodiments, the assembly further has a sealing member attached to the stent frame to prevent leakage around the replacement heart valve assembly.
Abstract:
Some embodiments of an electrical stimulation system employ wireless electrode assemblies to provide pacing therapy, defibrillation therapy, or other stimulation therapy. In certain embodiments, the wireless electrode assemblies may include a guide wire channel so that each electrode assembly can be advanced over a guide wire instrument through the endocardium. For example, a distal tip portion of a guide wire instrument can penetrate through the endocardium and into the myocardial wall of a heart chamber, and the electrode assembly may then be advanced over the guide wire and into the heart chamber wall. In such circumstances, the guide wire instrument (and other portions of the delivery system) can be retracted from the heart chamber wall, thereby leaving the electrode assembly embedded in the heart tissue.
Abstract:
Some embodiments of an electrical stimulation system employ wireless electrode assemblies to provide pacing therapy, defibrillation therapy, or other stimulation therapy. In certain embodiments, the wireless electrode assemblies may include a guide wire channel so that each electrode assembly can be advanced over a guide wire instrument through the endocardium. For example, a distal tip portion of a guide wire instrument can penetrate through the endocardium and into the myocardial wall of a heart chamber, and the electrode assembly may then be advanced over the guide wire and into the heart chamber wall. In such circumstances, the guide wire instrument (and other portions of the delivery system) can be retracted from the heart chamber wall, thereby leaving the electrode assembly embedded in the heart tissue.
Abstract:
Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.