Abstract:
A method for controlling a fuel injector of an engine system includes applying a pull-in current to close a spill valve of the fuel injector and detecting a timing at which the spill valve closes. The method also includes adjusting at least one of an amplitude of the pull-in current, a duration of the pull-in current, or a timing of a start of an application of the pull-in current based on the detected timing of the closing of the spill valve.
Abstract:
A fuel injection method includes applying a first method current to close a spill valve according to a first method, applying a control valve current to open a control valve, and discontinuing the application of the control valve current to thereby cause the control valve to close. The method also includes applying a second method current to maintain the spill valve closed according to a second method and detecting a timing of a closing of the control valve while applying the second method current according to the second method, the second method being different than the first method.
Abstract:
A method of injecting fuel with a fuel injector includes applying a spill valve current to close a spill valve and applying a control valve current to move a control valve to an injection position. The method also includes discontinuing the application of the spill valve current to open the spill valve and preventing a return of the control valve to a non-injection position while detecting a timing when the spill valve opens.
Abstract:
A control system for a fuel supply module of an engine is provided. The control system includes a first fuel flow sensor in a fuel supply line which detects a first amount of fuel flowing through the fuel supply line and generates a first signal indicative of the first amount of fuel. The control system includes a second fuel flow sensor in the fuel return line which detects a second amount of fuel flowing through the fuel return line and generates a second signal indicative of the second amount of fuel. A controller receives the first signal and the second signal. The controller calculates a difference between the first signal and the second signal. The controller commands operation of the fuel supply module to supply a fuel flow to the engine independent of the engine speed, based on the difference between the first signal and the second signal.
Abstract:
A method for operating an internal combustion engine includes monitoring engine parameters using an electronic controller, determining a surge speed limit for the engine based on a compressor map, determining an offset engine speed based on a margin between the surge speed limit and an engine speed, determining a minimum engine speed based on the margin, applying the offset engine speed to an engine speed signal to provide an adjusted engine speed, and applying the adjusted engine speed to a desired engine speed when a speed of the engine approaches the surge speed limit.