Abstract:
A device for cage jamming buffer of large-tonnage hoisting system of ultra-deep shaft is provided. End cage jamming buffer mechanisms are added at both ends of an automatic wire rope tension balancing mechanism, wherein the end cage jamming buffer mechanisms include an end buffer module and an end fixing module, and the end buffer module and the end fixing module are respectively mounted on shafts of the automatic wire rope tension balancing mechanisms at two ends. The end buffer module mainly consists of a buffer bearing pedestal, a limit block, a buffer block, and a stop block sequentially mounted on the shaft of the automatic wire rope tension balancing mechanism at one end. The end fixing module mainly consists of a fixing bearing pedestal and a fixing block mounted on the shaft, wherein the fixing bearing pedestal is connected to a transmission gear by an adjusting bolt.
Abstract:
A fracture detection system and method for a dumbbell pin of a scraper conveyor. The system comprises a scraper conveyor, a wireless ranging apparatus (2), a wireless communication device, a support controller and a monitoring center. The wireless ranging apparatus (2) is mounted on a ramp plate ledge of a scraper conveyor chute (1), and has a laser range finder and a reflection target plate (24) for detecting a relative displacement between any two adjacent chutes. The wireless communication device realizes communication between the wireless ranging apparatus (2) and the support controller, and transmits the displacement of the laser range finder to the support controller in a wireless transmission manner. The support controller controls an action of the scraper conveyor chute (1). A monitoring center is electrically connected to the support controller, and can perform storage processing on relative displacement data of any adjacent chutes. In the method, by taking a relative displacement value between adjacent chutes as a reference, whether a fracture fault occurs in a dumbbell pin is judged, the position of the fractured dumbbell pin can be accurately determined, and a support controller controls a chute action, thereby having a high promotion and usage value.
Abstract:
A drilling and bursting heading machine, comprising a drilling and bursting device (1), an angle control device, a forward-backward telescopic device and a cantilever type heading machine (2), wherein the drilling and bursting device (1) is mounted on a forward-backward moving component of the forward-backward telescopic device by means of the angle control device, and the forward-backward telescopic device is mounted on the cantilever type heading machine (2); the drilling and bursting device (1) comprises a fixing support (1-20), as well as a rock drill component and a bursting component fixedly mounted on the fixing support (1-20) respectively; the angle control device comprises a mounting base (1-15), an auxiliary rotary hydraulic motor (1-14), an adjustment hydraulic cylinder (1-13) and a main rotary hydraulic motor (1-12); and when the forward-backward moving component of the forward-backward telescopic device completely extends out, the distance from a front end of the drilling and bursting device (1) to a working plane is shorter than the distance from a front end of a cutting head of the cantilever type heading machine (2) to the working plane. The drilling and bursting heading machine has a compact structure and is able to implement quick drilling and bursting on a hard rock stratum having a rock hardness f greater than 10 without increasing the energy consumption, so that the heading efficiency is improved and potential safety risks are reduced.
Abstract:
An eccentric loading adjusting mechanism (5) and method for a parallel suspension platform. The adjusting mechanism (5) comprises a rotary platform (5-2) and a support guide frame (5-3) disposed on the rotary platform (5-2), wherein the base of the rotary platform (5-2) is fixedly connected to a suspension platform (4); a circular guide rail (5-8) is provided around the rotary platform (5-2); the support guide frame (5-3) is provided with two counterweight guide rails (5-15) and is connected to a rotary table of the rotary platform (5-2) by means of a rotary plate (5-17) on the support guide frame (5-3); and an electric drive pusher (5-6) drives a counterweight means (5-9) to move along the two counterweight guide rails (5-15), thereby eliminating eccentric loading.
Abstract:
A lap joint platform of a large-load lifting container includes a machine frame, a rocker arm platform, a rear rocker arm platform, locking and loading devices. The lap joint platform is stable in loading and unloading processes.
Abstract:
A device for monitoring tension equalization and displacement adjustment states of steel wire ropes of a multi-rope hoister includes a displacement sensor mounted on a steel wire rope tension equalization device, a signal acquisition transmitter designed to store and transmit signals of the displacement sensor, a barometric altimeter designed to detect the depth of a mine shaft where a hoisting container is located, and a wireless receiving and processing system arranged at the well mouth of the mine shaft. A method for use includes collecting the displacement adjustment amounts of the tension equalization devices connected with all the hoisting ropes of the hoisting container and the corresponding depth position of the hoisting container during the up-down running process of the hoisting container by means of the signal acquisition transmitter; judging the maximum displacement adjustment amount measured in the entire hoisting process and the corresponding tension adjustment device and corresponding depth, by receiving and processing data via the wireless receiving and processing system; and, giving an alarm when the maximum adjusted displacement is greater than a preset adjustment threshold.
Abstract:
The disclosure discloses a device for detecting idling time of a brake shoe of a monorail hoist and a detection method thereof. The device includes a contact detection unit, a common end roller unit, an idling time detection unit and detection lines. The contact detection unit installed on a brake of the monorail hoist includes a tube in connection with the brake shoe. The common end roller unit is installed on a frame of the monorail hoist and corresponds to a travelling track. A metal probe corresponding to the travelling track is arranged inside the tube. A limiting bolt corresponding to a raised cylindrical block formed on the metal probe is formed on an inner side wall of the tube. The metal probe is contactable with the travelling track or the limiting bolt when the brake shoe brakes.
Abstract:
The present disclosure discloses a method for positioning an auxiliary transportation vehicle in a coal mine and a positioning system thereof. The method comprises: acquiring a rotation velocity of each wheels and a rotation angle of a steering wheel, constructing a kinematics model based on wheels not for steering of the vehicle and a kinematics model based on wheels for steering of the vehicle respectively, and constructing a kinematics model based on a geometric center of the vehicle according to the above two kinematics models; and according to a travelling condition of the vehicle, integrating the kinematics model based on the geometric center with a strap-down inertial navigation system for positioning, when the vehicle is in a normal travelling state; and integrating, the kinematics model based on the wheels not for steering with the strap-down inertial navigation system for positioning, when the vehicle is in an abnormal travelling state.
Abstract:
A high-precision positioning system for a monorail hoist in a mine includes two gear carriers symmetrically arranged on both sides of an I-beam track. Each of the gear carriers includes a positioning wheel and a plurality of travelling wheels. The travelling wheels are travelling on an upper end face of a bottom plate of the I-beam track, and the positioning wheel is in engagement transmission with a rack at a lower end of the bottom plate of the I-beam track. The gear carriers include an installation bracket and a connecting seat configured to connect the monorail hoist. The installation bracket includes an inertial measuring unit and a single-chip microcomputer that are electrically connected with each other. The positioning wheel includes a rotation angle sensor and the rotation angle sensor is electrically connected to the single-chip microcomputer. A headstock at both ends of the monorail hoist includes a coordinate updating unit.
Abstract:
A series-parallel monorail hoist based on an oil-electric hybrid power and a controlling method thereof. The monorail hoist includes a cabin, a hydraulic driving system, a lifting beam, a gear track driving and energy storage system, and a speed adaptive control system connected in series with each other and travelling on a track. The monorail hoist is capable of implementing an independent drive by an electric motor or a diesel engine in an endurance mode, a hybrid drive of the electric motor and the diesel engine in a transportation mode, and a hybrid drive of the diesel engine and a flywheel energy storage system in a climbing mode, according to different operating conditions that include conditions of an upslope, a downslope and a load. Power requirements for the monorail hoist under various operating conditions are satisfied, and the excess energy is recovered during the process of travelling.