Abstract:
Systems and methods of adjusting the diameter of an endoluminal prosthesis that allows for controlled radial deployment of the endoluminal prosthesis and the ability to revise the positioning of the endoluminal prosthesis after unsheathing. The endoluminal prosthesis includes a stent graft having a tubular graft wall, a stent, a main strand, a proximal strand, and a distal strand.
Abstract:
Disclosed herein is a stent which includes stent ring structures made up of at least one wire and at least one tubular connector through which a portion of the wire is disposed. The tubular connector includes a side wall with an aperture formed therethrough. A portion of the wire extends therethrough and acts as a barb. A method of making such a stent is also disclosed.
Abstract:
A handle assembly for a prosthesis delivery device is described. The handle assembly comprises a stationary main handle having a proximal end and a distal end and an outer surface extending there between. A first handle extends proximally from the main handle and is rotationally moveable relative to the main handle, the first handle having a proximal end and a distal end and defining a first handle interior. A second handle extends distally from the main handle and is rotationally moveable relative to the main handle, the second handle having a proximal end and a distal end and defining a second handle interior. The first handle comprises a threaded internal surface extending between the proximal and distal ends and the second handle comprises a threaded internal surface extending between the proximal and distal ends.
Abstract:
Disclosed herein is a stent which includes stent ring structures made up of at least one wire and at least one tubular connector through which a portion of the wire is disposed. The tubular connector includes a side wall with an aperture formed therethrough. A portion of the wire extends therethrough and acts as a barb. A method of making such a stent is also disclosed.
Abstract:
A stent is provided having a plurality of intersecting elongated members arranged to form a plurality of cells, the plurality of cells defining an elongated tube with a lumen running therethrough. The elongated tube has first, second, and third sections, the first section having a substantially first diameter and the third section having a substantially constant second diameter that is larger than the substantially constant first diameter of the first section, wherein the diameter of the second section transitions from the first diameter to the second diameter. Each of the plurality of cells within the first section have a pitch that is tighter than each of the plurality of cells within the second and third sections. In the second section, the plurality of intersecting elongated members includes a plurality of pairs of elongated members, wherein each pair of elongated members includes two adjacent elongated members twisted axially around each other.
Abstract:
A handle assembly for a prosthesis delivery device is described. The handle assembly comprises a stationary main handle having a proximal end and a distal end and an outer surface extending there between. A first handle extends proximally from the main handle and is rotationally moveable relative to the main handle, the first handle having a proximal end and a distal end and defining a first handle interior. A second handle extends distally from the main handle and is rotationally moveable relative to the main handle, the second handle having a proximal end and a distal end and defining a second handle interior. The first handle comprises a threaded internal surface extending between the proximal and distal ends and the second handle comprises a threaded internal surface extending between the proximal and distal ends.
Abstract:
A handle assembly for a prosthesis delivery device is disclosed. The handle assembly comprises a stationary main handle having a proximal end and a distal end and an outer surface extending therebetween. A first helical groove is formed in at least a portion of the outer surface of the main handle and a first trigger wire actuation mechanism disposed about the main handle and rotatably moveable relative to the main handle. A first trigger wire is operatively connected to the first trigger wire actuation mechanism, the first trigger wire having a prosthesis capture condition and a prosthesis release condition. Movement of the first trigger wire actuation mechanism causes movement of the first trigger wire thereby moving the first trigger wire from the prosthesis capture condition to the prosthesis release condition. Additional trigger wire actuation mechanisms operatively connected to one or more additional trigger wires may also be disposed about the main handle.
Abstract:
A delivery system for a stent graft may include a stent graft having a proximal end, a distal end, an internal lumen between the proximal end and the distal end, a graft material tube, a graft material sidewall and a plurality of longitudinally spaced apart self-expanding stents attached to the graft material sidewall; a guidewire catheter extending longitudinally through the lumen of the stent graft; and a wire extending longitudinally along only a first side of the graft material tube in an undulating pattern of successive curves in alternate directions, the wire repeatedly extending through the graft material sidewall from inside the graft material tube to outside the graft material tube such that a portion of the wire extends over the guidewire catheter along a longitudinal length of the guidewire catheter to secure the guidewire catheter at least partially to an internal wall of the stent graft.
Abstract:
The disclosure is directed to a continuous stitch wire routing and delivery system. The system includes a transitional stitching on a tube of a stent graft. The transitional stitching includes a distal portion stitching and a proximal portion stitching. A portion of each stitch loop of the stitches of the transitional stitching is disposed outside the tube and having a string passing through the stitch loop. A distal portion of the string passes through stitch loops of the distal portion stitching, a middle portion of the string is circumferentially around the tube, and a proximal portion of the string passes through stitch loops of the proximal portion stitching. The stent graft is in a compressed state when a tension of the string is above a high-tension threshold. The stent graft is in an expanded state when the tension is below a low-tension threshold.
Abstract:
A stent is provided having a plurality of intersecting elongated members arranged to form a plurality of cells, which define an elongated tube with a lumen. The elongated tube has first and second sections, the first section having a substantially constant first diameter, the second section having a substantially constant second diameter that is larger than the first diameter. The elongated tube also has a transition section between the first and second sections, the transition section having a concave curvature extending proximally from the first section and a convex curvature extending proximally from the concave curvature to the second portion. A proximal end of the second section has a plurality of rounded ends formed by the plurality of intersecting elongated members. Each of the plurality of cells within the first section have a pitch that is tighter than each of the plurality of cells within the second section.