Abstract:
A radio receiver for receiving first signals of a first frequency spectrum having principal energy in a first frequency band and second signals of a second frequency spectrum having principal energy in second and third frequency bands, located on either side of the first frequency band, includes (i) an input for receiving an incoming signal; (ii) frequency shifting means for frequency shifting the incoming signal to form an intermediate frequency signal; and (iii) a filter for filtering the intermediate frequency signal. The filter has a frequency response that has a first passband and a second passband separated by a central stopband. A control unit for controlling the frequency shifting means has first and second modes for reception of the first and second signals. In the first mode, the control unit controls the frequency shifting means so as to frequency shift the incoming signal so that (a) the first frequency band of the incoming signal is shifted onto one of the first and second passbands and (b) one of the second and third frequency bands of the incoming signal is shifted onto the central stopband. In the second mode, the control unit controls the frequency shifting means so as to frequency shift the incoming signal so that (a) the second and third frequency bands of the incoming signal are shifted onto, respectively, the first and second passbands and (b) the first frequency band of the incoming signal is shifted onto the central stopband.
Abstract:
Apparatus for controlling the generation of a DC signal at the output of a mixer, so that the DC signal is predictable, enabling a static offset compensation voltage to offset the DC signal. The apparatus comprises a mixer configured to receive a first and a second input signal, the mixer being such as to generate a first DC signal at the output of the mixer when the first and second input signal have the same frequency and a first relative phase, a phase detector for determining the relative phase of the first and second signals, and a phase modifier configured to modify the phase of the second signal relative to the first signal in dependence on the determination of the relative phase between the first and second signals such that the resulting DC signal at the output of the mixer is the first DC signal.
Abstract:
A method for generating random data, the method comprising repeatedly performing a series of operations, and the series of operations comprising processing a seed value to generate a resulting value for use as the seed value in a subsequent performance of the series of operations and to generate output random data; wherein the series of operations also comprises: determining whether a predetermined amount of new truly random data is available; and if such data is available, modifying the generation of at least the resulting value in dependence on the new truly random data.
Abstract:
A variable frequency oscillator comprising: an oscillatory circuit for generating a periodic output dependent on the capacitance between a first node and a second node of the circuit, and having a capacitative element connected between the first node and the second node; the capacitative element comprising: a variable capacitance unit, the capacitance of which is variable for varying the frequency of the output and a plurality of finite capacitances each being selectively connectable in parallel with the variable capacitance unit between the first node and the second node to trim the frequency of the output.
Abstract:
The present invention is directed to a phase shifting arrangement for generating a set of mutually orthogonal signals. In one aspect, the invention provides a system that includes a phase shifting unit for receiving an input signal. The phase shifting unit includes a first phase shift circuit for generating a first output signal phase-shifted by a first amount with respect to the input signal, a second phase shift circuit for generating a second output signal phase-shifted by a second amount with respect to the input signal, and a third phase shift circuit for generating a third output signal phase-shifted by a third amount with respect to the input signal.