Abstract:
A voltage-controlled oscillator comprises a variable inductor, a negative impedance circuit, an operating voltage source and a ground point. The variable inductor comprises a transformer and a transistor switch, the transformer comprising a primary side coil and a secondary side coil, the primary side coil comprising a first coil and a second coil, and the secondary side coil comprising a third coil and a fourth coil. The transistor switch is connected in parallel with the primary side coil to adjust an inductance value of the variable inductor based on a gate voltage. The negative impedance circuit is connected in parallel with the secondary side coil to compensate the power consumption of the voltage-controlled oscillator during oscillation. The operating voltage source is electrically connected between the third coil and the fourth coil, and the ground point is electrically connected between the first coil and the second coil.
Abstract:
The invention discloses a power controlling apparatus for a biochip including M regions. Each region includes a plurality of cells respectively. The power controlling apparatus includes a pulse generating module, a combinational circuit, and M controlling modules. The pulse generating module generates a pulse. The combinational circuit receives the pulse and generates M controlling signals. Each controlling signal has a predetermined phase which is different from the phase of the other controlling signal. The M controlling modules are electrically connected to the combinational circuit. Each of the M controlling signals corresponds to and activates one of the M controlling modules to selectively power on one corresponding region of the M regions. The cells in the corresponding region which is powered have an action potential refractory time that is longer than the power-on interval of the corresponding region.
Abstract:
The invention is a biochemical sensing device, including a photodiode capable of sensing the light generated by the reaction made by a specific compound, a specific enzyme, and a luminol as well as converting the optical signal into a current signal. Also, there is a current/voltage converting circuit capable of converting the current signal into an analog voltage signal. In turn, the analog voltage signal can be converted into a digital voltage signal through an analog/digital converter. Finally, by using an electronic device, the digital voltage signal can be received and analyzed, and through the analysis, the amount of the specific compound can be measured. The device of the invention can provide a simple real-time medical assay that can be performed in massive amount. For this reason, the drawbacks of a conventional spectrum analysis instrument of being bulky and expensive can be improved.
Abstract:
A sampled-data, current-mode circuit implements analog functions in a standard digital process. Among sampled-data current-mode circuits, the current S/H (CSH) circuit is a key component. This fully differential CSH circuit was implemented in a 1.2 .mu.m N-well double-poly double metal CMOS technology adapted to 8-bit resolution at a 15 MHz sampling rate.
Abstract:
A circuit for protecting a CMOS chip against damage from electrostatic discharges (ESD) has four SCRs connected between the line to be protected and the two power supply termiamls, V.sub.DD and V.sub.SS. The SCRs are poled to conduct ESD current of either polarity to each power supply terminal. The bipolar transistors for the SCRs and the associated component are arranged in the chip in an advantageous way that reduces the input/output parasitic capacitance and improves the protection capability of this proposed circuit with a low ESD trigger-on voltage.