Abstract:
A voltage-controlled oscillator comprises a variable inductor, a negative impedance circuit, an operating voltage source and a ground point. The variable inductor comprises a transformer and a transistor switch, the transformer comprising a primary side coil and a secondary side coil, the primary side coil comprising a first coil and a second coil, and the secondary side coil comprising a third coil and a fourth coil. The transistor switch is connected in parallel with the primary side coil to adjust an inductance value of the variable inductor based on a gate voltage. The negative impedance circuit is connected in parallel with the secondary side coil to compensate the power consumption of the voltage-controlled oscillator during oscillation. The operating voltage source is electrically connected between the third coil and the fourth coil, and the ground point is electrically connected between the first coil and the second coil.
Abstract:
A voltage-controlled oscillator comprises a variable inductor, a negative impedance circuit, an operating voltage source and a ground point. The variable inductor comprises a transformer and a transistor switch, the transformer comprising a primary side coil and a secondary side coil, the primary side coil comprising a first coil and a second coil, and the secondary side coil comprising a third coil and a fourth coil. The transistor switch is connected in parallel with the primary side coil to adjust an inductance value of the variable inductor based on a gate voltage. The negative impedance circuit is connected in parallel with the secondary side coil to compensate the power consumption of the voltage-controlled oscillator during oscillation. The operating voltage source is electrically connected between the third coil and the fourth coil, and the ground point is electrically connected between the first coil and the second coil.
Abstract:
A digital PLL frequency synthesizer characterized by fast-locking and low-jitters is presented. The PLL comprises a phase detector, a controllable oscillator, a loop filter having an automatically-adjusted loop gain, a feedback phase integration circuit, and a reference phase integration circuit. Fast-locking is achieved by dynamically adjusting forward-path gain and integral-path gain according to the output of the phase detector and the output of the integral-path during phase tracking. A skew-compensated counter circuit is proposed, which incorporates an asynchronous counter, a data register and a sample phase generator and features high-speed and low-power operation.
Abstract:
A method and an apparatus for frequency synthesizing are provided for a wireless communication system. In a frequency synthesizer, a phase lock loop (PLL) circuit generates a first elemental frequency based on a reference frequency and a unity frequency. A first division module then divides the first elemental frequency to generate a second elemental frequency. A second division module divides the second elemental frequency a multiple of times to generate the unity frequency and a plurality of intermediate frequencies each having an exponential ratio to the unity frequency by a power of two. A second mixer is provided to mix one of the intermediate frequencies with the unity frequency to generate a step frequency, and a first mixer mixes the step frequency with one of the first and second elemental frequencies to generate an output frequency having a variety covering all frequency bands in an Ultra-Wide-Band (UWB) spectrum.
Abstract:
A method of forming a high transmittance attenuated phase-shifting mask, comprising the following steps. A patterned shifter blank including a patterned shifter layer, having a first variable transmittance and a first phase angle overlying a partially exposed transparent substrate is provided. The partially exposed transparent substrate is etched for a first predetermined time to form trenches therein having a predetermined depth, increasing the first variable transmittance and the first phase angle to a second variable transmittance and a second phase angle, respectively. The shifter layer is treated with an aqueous solution of NH4OH:H2O2 for a second predetermined time, increasing the second variable transmittance to a third and final, predetermined variable transmittance, and decreasing the second phase angle to a third phase angle. Whereby the third phase angle is substantially equal to the initial phase angle of said shifter layer.
Abstract:
The present invention discloses a fast-locked clock and data recovery circuit, which adopts a 2× oversampling technology and comprises: a multi phase-outputting phase-locked loop generating a plurality of phases θi; a phase interpolator synthesizing the obtained phases θn and θn+2 into a sampling phase Φn based on the weighting coefficient k; a phase detector detects the phase lead or lag between the input data and the sampling phase and generates an up/down signal; and a phase search engine update the weighting coefficient and modulate the sampling phase according to the up/down correction signals. Further, the present invention proposes a data recovery circuit implementing a binary search method and a 2× oversampling method, whereby the time for clock locking can be greatly reduced. Furthermore, the present invention utilizes a multi-phase time-sharing parallel sampling technology to achieve high-speed operation and low power consumption.
Abstract translation:本发明公开了一种采用2x过采样技术的快速锁定时钟和数据恢复电路,包括:产生多个相位的多相输出锁相环; 基于所述加权系数k将所获得的相位θn和n和n + n + 2合成到采样相位Phi N n N中的相位内插器; 相位检测器检测输入数据和采样相位之间的相位超前或滞后,并产生上/下信号; 相位搜索引擎更新加权系数,并根据上/下校正信号调制采样相位。 此外,本发明提出了一种实现二进制搜索方法和2x过采样方法的数据恢复电路,从而大大减少了时钟锁定的时间。 此外,本发明利用多相分时并行采样技术实现高速运行和低功耗。
Abstract:
An amplifier circuit includes a modulation signal generating circuit, a driving stage circuit and an output stage circuit. The modulation signal generating circuit generates a pair of modulation signals according to a pair of differential input signals and a pair of clock signals. The pair of clock signals includes a first clock signal and a second clock signal having a phase difference therebetween. The driving stage circuit generates a pair of driving signals according to the pair of modulation signals. The output stage circuit generates a pair of amplified output signals according to the pair of driving signals.
Abstract:
A dynamic biasing amplifier apparatus, and dynamic biasing apparatus, and method are disclosed. The dynamic biasing amplifier apparatus includes a comparator unit, a dynamic bias generator unit, and an amplifier unit. The amplifier unit receives an input signal and output an output signal based on at least a bias voltage. The comparator unit compares the positive and negative input signals of the amplifier unit. The dynamic bias generator unit generates and adjusts the bias voltage in accordance with the comparing result of the comparator unit. Therefore, the dynamic bias generator unit controls the amplifier unit to operate in a low static current mode when the input signal is in steady state; and the dynamic bias generator unit controls the amplifier unit to operate in a high dynamic current mode when the input signal is in transition state.
Abstract:
A laser driver. The laser driver comprises a diode driver, a power detector, a first extreme detector, a second extreme detector and a current controller. The diode driver receives bias and modulation currents to control a laser diode for generating light signals. The power detector detects optical power of the light signals. The first and second extreme detectors, both coupled to the power detector, detect the first and second extreme values among detected optical power. The first extreme value is either the maximum or the minimum optical power of the light signals, while the second extreme value is the other.
Abstract:
A symmetrical stacked inductor comprising a plurality of conductive layers using at least one conductive line formed out of a symmetrical and geometric conductive layer and having at least one inter-metal dielectric layer for isolating each conductive layer, and wherein the conductive line does not intersect; and a plurality of vias placed between the inter-metal dielectric layers for electrical conduction.