Abstract:
Authentication with security in wireless networks may be provided. A first confirm message comprising a first send-confirm element and a first confirm element may be received. Next, an Authenticator Number Used Once (ANonce) may be generated and a second confirm message may be sent comprising the ANonce, a second send-confirm element, and a second confirm element. Then an association request may be received comprising a Supplicant Number Used Once (SNonce) and a Message Integrity Code (MIC). An association response may be sent comprising an encrypted Group Temporal Key (GTK), an encrypted Integrity Group Temporal Key (IGTK), the ANonce, and the MIC. An acknowledgment may be received comprising the MIC in an Extensible Authentication Protocol (EAP) over LAN (EAPoL) key frame and a controller port may be unblocked in response to receiving the acknowledgment.
Abstract:
Systems, methods, and computer-readable media are provided for an efficient roaming management method using a single association identifier token for associating with different access points. In one aspect of the present disclosure, a network controller includes memory having computer-readable instructions stored therein and one or more processors. The one or more processors are configured to execute the computer-readable instructions to receive a request from an endpoint to connect to a first access point; generate association identification token (e.g., PMK and PMKID) for the endpoint to connect to the first access point; and distribute the association identification token to a second access point prior to the endpoint attempting to connect to the second access point, the association identification token being used by the second access point to validate a subsequent request by the endpoint to connect to the second access point.
Abstract:
A network function is configured to initiate a bulk session cleanup with a single release request. The network function detects a configuration change to a wireless network system that affects multiple user sessions for multiple user devices. The network function generates a single bulk session release request identifying the affected user sessions and provides the single bulk session release request to at least one other network function responsible for the user sessions.
Abstract:
Techniques that provide proactive and intelligent packet capturing are described herein. In one embodiment, a method includes storing information associated with a plurality of user equipment (UE) sessions of a plurality of UEs within a mobile network; detecting an anomaly associated with at least one UE session of at least one UE based, at least in part, on the information stored for the at least one UE session; and activating a trace for the at least one UE session based, at least in part, on detecting the anomaly associated with the at least one UE session, wherein activating the trace comprises capturing packet information for a data packet flow associated with the at least one UE session at one or more data-path network elements of a plurality of data-path network elements within the mobile network.
Abstract:
A wireless network environment includes a plurality of access points, a wireless local area network (WLAN) controller, and a plurality of client devices. The client devices attempt to authenticate with the WLAN controller to gain access to wireless services provided by the WLAN controller and/or the access points. To authenticate with the WLAN controller, the WLAN controller obtains a request to establish a wireless network connection from one or more of the client devices. The WLAN controller then provides a response to the request. The response indicates whether the WLAN controller supports performing password-mapped simultaneous authentication of equals (SAE). The WLAN controller then obtains a message including a password-mapped identifier from the client device. The WLAN controller then establishes a connection with the client device based on the password obtained with password-mapped identifier mapping at WLC.
Abstract:
Techniques that provide proactive and intelligent packet capturing are described herein. In one embodiment, a method includes storing information associated with a plurality of user equipment (UE) sessions of a plurality of UEs within a mobile network; detecting an anomaly associated with at least one UE session of at least one UE based, at least in part, on the information stored for the at least one UE session; and activating a trace for the at least one UE session based, at least in part, on detecting the anomaly associated with the at least one UE session, wherein activating the trace comprises capturing packet information for a data packet flow associated with the at least one UE session at one or more data-path network elements of a plurality of data-path network elements within the mobile network.
Abstract:
An example method is provided and may include retrieving by a user equipment (UE) an access point (AP) Media Access Control (MAC) address for an AP to which the UE is connected; reporting location information for the UE to an evolved Packet Data Gateway over an SWu interface using Internet Key Exchange version 2 (IKEv2) protocol, wherein the location information includes, at least in part, a UE location in GPS coordinates, a service set identifier, the retrieved AP MAC address and cell identity information for the UE; and populating a location database with the location information. The method can include embedding the location information in an identity initiator (Idi) of an IKE Authentication Request (IKE_AUTH_REQ) message using a Network Access Identifier (NAI) and communicating the location information from the ePDG to a PGW over an S2b interface using a private extension information element of GPRS Tunneling Protocol version 2 (GTPv2).
Abstract:
An example method is provided and may include retrieving by a user equipment (UE) an access point (AP) Media Access Control (MAC) address for an AP to which the UE is connected; reporting location information for the UE to an evolved Packet Data Gateway over an SWu interface using Internet Key Exchange version 2 (IKEv2) protocol, wherein the location information includes, at least in part, a UE location in GPS coordinates, a service set identifier, the retrieved AP MAC address and cell identity information for the UE; and populating a location database with the location information. The method can include embedding the location information in an identity initiator (Idi) of an IKE Authentication Request (IKE_AUTH_REQ) message using a Network Access Identifier (NAI) and communicating the location information from the ePDG to a PGW over an S2b interface using a private extension information element of GPRS Tunneling Protocol version 2 (GTPv2).
Abstract:
An example method is provided and may include receiving a DIAMETER-based error over an SWm interface by a first evolved packet data gateway (ePDG) for a user equipment (UE) attempting to connect to the first ePDG; determining an Internet Key Exchange version two (IKEv2) error type corresponding to the DIAMETER-based error; and communicating the IKEv2 error type to the UE over an SWu interface. In some cases, the IKEv2 error type can be included in a notify payload or in a vendor ID payload for an IKE authentication response (IKE_AUTH_RESP) message. By distinguishing the IKEv2 error type, the UE can determine whether the error is a temporary or a permanent type and can determine whether to attempt to connect again to the first ePDG after a period of time or attempt to connect to another ePDG, which can help to reduce unnecessary signaling and provide better connectivity and user experience.
Abstract:
An example method is provided and may include retrieving by a user equipment (UE) an access point (AP) Media Access Control (MAC) address for an AP to which the UE is connected; reporting location information for the UE to an evolved Packet Data Gateway over an SWu interface using Internet Key Exchange version 2 (IKEv2) protocol, wherein the location information includes, at least in part, a UE location in GPS coordinates, a service set identifier, the retrieved AP MAC address and cell identity information for the UE; and populating a location database with the location information. The method can include embedding the location information in an identity initiator (Idi) of an IKE Authentication Request (IKE_AUTH_REQ) message using a Network Access Identifier (NAI) and communicating the location information from the ePDG to a PGW over an S2b interface using a private extension information element of GPRS Tunneling Protocol version 2 (GTPv2).