Abstract:
In accordance with some aspects of the present invention, systems and methods are provided for dynamically and/or automatically selecting and/or modifying data path definitions that are used in performing storage operations on data. Alternate data paths may be specified or selected that use some or all resources that communicate with a particular destination to improve system reliability and performance. The system may also dynamically monitor and choose data path definitions to optimize system performance, conserve storage media and promote balanced load distribution.
Abstract:
A computerized method for sharing removable storage media in a network, the method comprising associating, in an index entry, a first piece of removable storage media in a first storage device with at least a first storage policy copy and a second storage policy copy; copying, to the first piece of removable storage media, data associated with the first storage policy copy; and copying, to the first piece of removable storage media, data associated with the second storage policy copy.
Abstract:
Systems and methods integrate disparate backup devices with a unified interface. In certain examples, a management console manages data from various backup devices, while retaining such data in its native format. The management console can display a hierarchical view of the client devices and/or their data and can further provide utilities for processing the various data formats. A data structure including fields for storing both metadata common to the client device data and value-added metadata can be used to mine or process the data of the disparate client devices. The unified single platform and interface reduces the need for multiple data management products and/or customized data utilities for each individual client device and provides a single pane of glass view into data management operations. Integrating the various types of storage formats and media allows a user to retain existing storage infrastructures and further facilitates scaling to meet long-term management needs.
Abstract:
Systems and methods for providing decoupled installation of data management systems used in conjunction with computer networks are disclosed. The method comprises installing data storage software in order to facilitate communication with a second computer in order to perform data storage operations. The software may be installed without knowledge of the second computer and/or the ability to communicate with the second computer. During the installation process, configuration parameters are obtained by the first computer and stored in a data structure. At least a portion of the configuration parameters recorded in the data structure is also provided to the second computer. The first and second computers subsequently communicate in order to register the first computer for use with the second computer.
Abstract:
Methods and systems are described for performing storage operations on electronic data in a network. In response to the initiation of a storage operation and according to a first set of selection logic, a media management component is selected to manage the storage operation. In response to the initiation of a storage operation and according to a second set of selection logic, a network storage device to associate with the storage operation. The selected media management component and the selected network storage device perform the storage operation on the electronic data.
Abstract:
Systems and methods for reconstructing unified data in an electronic storage network are provided which may include the identification and use of metadata stored centrally within the system. The metadata may be generated by a group of storage operation cells during storage operations within the network. The unified metadata is used to reconstruct data throughout the storage operation cells that may be missing, deleted or corrupt.
Abstract:
Data storage operations, including content-indexing, containerized deduplication, and policy-driven storage, are performed within a cloud environment. The systems support a variety of clients and cloud storage sites that may connect to the system in a cloud environment that requires data transfer over wide area networks, such as the Internet, which may have appreciable latency and/or packet loss, using various network protocols, including HTTP and FTP. Methods are disclosed for content indexing data stored within a cloud environment to facilitate later searching, including collaborative searching. Methods are also disclosed for performing containerized deduplication to reduce the strain on a system namespace, effectuate cost savings, etc. Methods are disclosed for identifying suitable storage locations, including suitable cloud storage sites, for data files subject to a storage policy. Further, systems and methods for providing a cloud gateway and a scalable data object store within a cloud environment are disclosed, along with other features.
Abstract:
An improved content indexing system is disclosed herein that content indexing system combines the functionality of the backup metadata database and the content index database into a single backup and content index database to avoid the need to perform synchronization operations. By using a single backup and content index database, the content indexing system also reduces the computing performance costs that would be associated with the synchronization operations as the amount of indexed content increases, thereby solving scalability issues.
Abstract:
An information management system is provided herein that combines data backup and data migration operations such that data appears available in a network-accessible folder when in fact the data is stored as a secondary copy in a secondary storage device. For example, a user can indicate that a first file should be added to the network-accessible folder. A client computing device can transmit the first file to a secondary storage computing device that performs a backup operation to store a backup copy of the first file in the secondary storage device. The secondary storage computing device can also generate an index of the first file, which includes a location of the backup copy of the first file, and transmit the index to a server that manages the network-accessible folder. Thus, the backup copy of the first file can be retrieved if the first file is selected via the network-accessible folder.
Abstract:
A Remote Metadata Center provides Distaster Recovery (DR) testing and metadata backup services to multiple business organizations. Metadata associated with local data backups performed at business organizations is transmitetd to the Remote Metadata Center. Corresponding backup data is storeged in a data storage system that is either stored locally at the business organization or at a data storage facility that is at a different location than the Remote Metadata Center and the business organization. DR testing can be staged from the Remote Data Center using the metadata receievd and optionally with assistance from an operator at the business organization and/or the data storage facility.