Abstract:
The present disclosure is directed to a high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a sinusoidal reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.
Abstract:
A control unit for a switching converter has an inductor element coupled to an input and a switch element coupled to the inductor element. The control unit generates a command signal with a switching period to control the switching of the switch element and to determine a first time period where an inductor current is flowing in the inductor element for storing energy and a second time period where energy is transferred to a load. The second time period has an end portion where the inductor current drops to zero. The control unit determines the duration of the first time period based on a comparison between a sensing voltage, indicative of the peak value of the inductor current, and a reference voltage. A pre-distortion stage pre-distorts the reference voltage in order to compensate for a corresponding distortion on an input current of the converter compared to a desired sinusoidal characteristic.
Abstract:
An effective method enhances energy saving at low load in a resonant converter with a hysteretic control scheme for implementing burst-mode at light load. The method causes a current controlled oscillator of the converter to stop oscillating when a feedback control current of the output voltage of the converter reaches a first threshold value, and introduces a nonlinearity in the functional relation between the frequency of oscillation and said feedback control current or in a derivative of the functional relation, while the control current is between a lower, second threshold value and the first threshold value, such that the frequency of oscillation remains equal or smaller than the frequency of oscillation when the control current is equal to the second threshold value. Several circuital implementations are illustrated, all of simple realization without requiring any costly microcontroller.
Abstract:
The present disclosure is directed to a primary-controlled high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs, and may be compatible with phase-cut dimmers. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.
Abstract:
The present disclosure is directed to a high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a sinusoidal reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.
Abstract:
The present disclosure is directed to a switching power converter having a regulated output voltage or output current. The power converter uses a control unit having a signal conditioning circuit to produce a control voltage signal, which is used to drive a power stage of the converter. The signal conditioning circuit includes a comparator that compares a measured electrical quantity to a reference value representative of a desired regulated output quantity, and produces a digital detection signal based on the comparison. A control actuator uses the digital detection signal to produce a correction signal, which is received by an averaging circuit. The averaging circuit then produces the control voltage signal based on an average of the correction signal.
Abstract:
A control device controls a switching circuit for a converter. The switching circuit comprises a half-bridge having a high-side transistor and a low-side transistor. The control device comprises a controller configured to control turning on and turning off said two transistors, so that a square-wave voltage is applied to the transformer primary. The controller is configured to start switching the half-bridge by turning on the low-side transistor. The control device comprises a first timer configure to initially turn on the low-side transistor for a duration given by a first time period useful for pre-charging a bootstrap capacitor couplable to the middle point of the half-bridge, and a second timer configured to keep the low-side transistor and the high-side transistor turned off for a second time period immediately following the first time period and having a longer duration than the first time period.
Abstract:
A control device of a switching circuit of a resonant apparatus is described. The switching circuit comprises at least one half-bridge having a high-side transistor and a low-side transistor connected between an input voltage and a reference voltage; the resonant apparatus comprises a resonant load. The control device is configured to determine the on time period and the off time period of the transistors alternatively and a dead time of both the transistors so that a periodic square-wave voltage is applied to the resonant load. The control device comprises a detector adapted to detect the current sign flowing through the resonant load and a correction circuit configured to extend the current operating time period of said two transistors in response to at least the current sign detected from the detection means.
Abstract:
A method for controlling a switching regulator includes defining a waiting time during which a trigger signal corresponding to a recirculation signal of the switching regulator is ignored holding a control switch in an open condition, and detecting a number of local valleys of the recirculation signal during the waiting time. In particular, defining the waiting time is performed for each switching cycle by adding a first value, which is determined on the basis of a load on the regulator, to a second variable value, which is proportional to the number valleys detected during the waiting time of the preceding switching cycle.
Abstract:
An integrated circuit controls a switch of a switching current regulator. The current regulator includes primary and secondary windings where a first and a second current flow, respectively. The switch is adapted to initiate or interrupt the circulation of the first current in the primary winding. The control integrated circuit includes a comparator configured to compare a first signal representative of the first current to a second signal and a divider circuit configured to generate the second signal as a ratio of a third signal, proportional to a voltage on the primary winding, with a voltage on a capacitor. The capacitor is charged by a further current controlled by the third signal when the second current is different from zero. The capacitor is discharged through a parallel-connected resistor when the value of said second current is substantially zero.