METHODS FOR OPERATING ACETYLENE HYDROGENATION UNITS IN OLEFIN PRODUCTION PROCESSES

    公开(公告)号:US20220135498A1

    公开(公告)日:2022-05-05

    申请号:US17433800

    申请日:2020-02-04

    Abstract: A method for selectively hydrogenating acetylene in a cracked gas from a steam cracking unit for producing olefins may include separating a hydrogenation feed from the cracked gas. The hydrogenation feed may include acetylene, hydrogen, carbon monoxide, and at least one product. The method may further include contacting the hydrogenation feed with an acetylene hydrogenation catalyst, the contacting causing hydrogenation of at least a portion of the acetylene of the hydrogenation feed to produce a hydrogenation effluent. In response to a change in a composition of a feedstock to the steam cracking unit that results in a change in a hydrogen concentration in the hydrogenation feed, the method may further include determining the hydrogen concentration in the hydrogenation feed and increasing or decreasing a temperature of the hydrogenation feed based on the determined hydrogen concentration of the hydrogenation feed.

    Process for catalytic dehydrogenation

    公开(公告)号:US10647634B2

    公开(公告)日:2020-05-12

    申请号:US16097719

    申请日:2017-05-03

    Abstract: A process for catalytic dehydrogenation comprising mixing fluidization gas a fluidization gas which comprises methane, natural gas, ethane, hydrogen, nitrogen or any combination thereof with a fluidized catalyst stream that has passed through a catalytic dehydrogenation reactor and has exited a catalyst separation zone to form a catalyst recycle stream; and recycling the catalyst recycle stream either directly or indirectly into a catalytic dehydrogenation reactor is provided.

    Methods for operating integrated chemical processing systems for producing olefins

    公开(公告)号:US11718572B2

    公开(公告)日:2023-08-08

    申请号:US17621949

    申请日:2020-06-08

    Abstract: A method for operating an integrated system for producing olefins may include contacting a hydrogenation feed with a first hydrogenation catalyst to produce a hydrogenated effluent, the hydrogenation feed including at least a portion of a first process effluent from a first olefin production process and at least a portion of a second process effluent from a second olefin production process. The hydrogenation feed may include at least hydrogen, ethylene, carbon monoxide, acetylene, methyl acetylene, and propadiene, and the first hydrogenation catalyst may be a hydrogenation catalyst having a temperature operating range of at least 40° C. The hydrogenated effluent may include methyl acetylene, propadiene, or both. The method may further include contacting at least a portion of the hydrogenated effluent with a second hydrogenation catalyst, which may cause hydrogenation of at least a portion of the methyl acetylene and propadiene to produce an MAPD hydrogenated effluent.

    Reconstituted dehydrogenation catalyst showing slowed activity loss when compared with fresh catalyst

    公开(公告)号:US11559790B2

    公开(公告)日:2023-01-24

    申请号:US17137978

    申请日:2020-12-30

    Abstract: A process for dehydrogenating alkane or alkylaromatic compounds comprising contacting the given compound and a dehydrogenation catalyst in a fluidized bed. The dehydrogenation catalyst is prepared from an at least partially deactivated platinum/gallium catalyst on an alumina-based support that is reconstituted by impregnating it with a platinum salt solution, then calcining it at a temperature from 400° C. to 1000° C., under conditions such that it has a platinum content ranging from 1 to 500 ppm, based on weight of catalyst; a gallium content ranging from 0.2 to 2.0 wt %; and a platinum to gallium ratio ranging from 1:20,000 to 1:4. It also has a Pt retention that is equal to or greater than that of a fresh catalyst being used in a same or similar catalytic process.

    METHODS FOR OPERATING INTEGRATED CHEMICAL PROCESSING SYSTEMS FOR PRODUCING OLEFINS

    公开(公告)号:US20220251006A1

    公开(公告)日:2022-08-11

    申请号:US17621949

    申请日:2020-06-08

    Abstract: A method for operating an integrated system for producing olefins may include contacting a hydrogenation feed with a first hydrogenation catalyst to produce a hydrogenated effluent, the hydrogenation feed including at least a portion of a first process effluent from a first olefin production process and at least a portion of a second process effluent from a second olefin production process. The hydrogenation feed may include at least hydrogen, ethylene, carbon monoxide, acetylene, methyl acetylene, and propadiene, and the first hydrogenation catalyst may be a hydrogenation catalyst having a temperature operating range of at least 40° C. The hydrogenated effluent may include methyl acetylene, propadiene, or both. The method may further include contacting at least a portion of the hydrogenated effluent with a second hydrogenation catalyst, which may cause hydrogenation of at least a portion of the methyl acetylene and propadiene to produce an MAPD hydrogenated effluent.

    Methods for operating dehydrogenation processes during non-normal operating conditions

    公开(公告)号:US11339105B2

    公开(公告)日:2022-05-24

    申请号:US17272741

    申请日:2019-08-15

    Abstract: According to one or more embodiments disclosed herein, methods for operating dehydrogenation processes during non-normal operating conditions, such as at start-up, shut-down, system recycle, or unit trip, are described. The methods may include contacting a feed stream with a catalyst in a reactor portion of a reactor system to form a reactor effluent stream, separating at least a portion of the reactor effluent stream from the catalyst, passing the catalyst to a catalyst processing portion and processing the catalyst, wherein processing the catalyst comprises contacting the catalyst with oxygen, passing the catalyst from the processing portion to the reactor portion, wherein the catalyst exiting the processing portion comprises at least 0.001 wt. % oxygen, and contacting the catalyst with supplemental hydrogen, the contacting removing at least a portion of the oxygen from the catalyst by a combustion reaction.

    CHEMICAL PROCESSING UTILIZING HYDROGEN CONTAINING SUPPLEMENTAL FUEL FOR CATALYST PROCESSING

    公开(公告)号:US20210261482A1

    公开(公告)日:2021-08-26

    申请号:US17256706

    申请日:2019-06-26

    Abstract: A method for processing a chemical stream includes contacting a feed stream with a catalyst in a reactor portion of a reactor system that includes a reactor portion and a catalyst processing portion. The catalyst includes platinum, gallium, or both and contacting the feed stream with the catalyst causes a reaction which forms an effluent stream. The method includes separating the effluent stream from the catalyst, passing the catalyst to the catalyst processing portion, and processing the catalyst in the catalyst processing portion. Processing the catalyst includes passing the catalyst to a combustor, combusting a supplemental fuel in the combustor to heat the catalyst, treating the heated catalyst with an oxygen-containing gas to produce a reactivated catalyst, and passing the reactivated catalyst from the catalyst processing portion to the reactor portion. The supplemental fuel may include a molar ratio of hydrogen to other combustible fuels of at least 1:1.

    CATALYSTS FOR DEHYDROGENATION PROCESS
    30.
    发明公开

    公开(公告)号:US20240343663A1

    公开(公告)日:2024-10-17

    申请号:US18683693

    申请日:2022-08-29

    CPC classification number: C07C5/3337 B01J8/24 B01J23/62 B01J23/96 C07C2523/62

    Abstract: A method for dehydrogenation of one or more hydrocarbons and regeneration and reactivation of a catalyst composition includes contacting a first gaseous stream comprising a first hydrocarbon, such as propane, with a catalyst composition in a dehydrogenation reactor at a first temperature, thereby producing a first dehydrogenated hydrocarbon, such as propylene, and a deactivated catalyst composition; combusting at least one fuel gas and coke on the deactivated catalyst in the presence of oxygen at a second temperature, thereby producing a heated catalyst composition; and reactivating the catalyst in the presence of oxygen. The second temperature is from 50° C. to 200° C. greater than the first temperature. The catalyst composition is also described and comprises gallium, platinum and a further noble metal, such as palladium.

Patent Agency Ranking