Abstract:
A connector made up of a plug and outlet which, when mated, define four shielded quadrants, each of which houses a pair of contacts. Shield members within the plug overlap and shield members within the outlet overlap. In addition, shield members within the outlet overlap adjacent shield members in the plug when mated. Overlapping the shield members at each shield member junction provides enhanced shielding and reduced crosstalk.
Abstract:
An improved cable preparation tool and an accompanying method which, when utilized concurrently, prepare fully shielded cables for termination into connecting devices. A preferred embodiment of the tool has hinged first and second tool handles biased together about a hinge by a resilient member. One end of a tool handle is fitted with a receptacle to receive and mount a detachable blade cartridge assembly which cuts the cable jacket and shielding metallic foils wrapped around individual pairs of insulated wires. A second receptacle is provided in either tool handle to receive a detachable template cartridge assembly which is used to properly position wires for termination into a connector. An exemplary method of cable preparation using the tool includes removing a cutting a cable jacket, cutting a plurality of foils and aligning wires using a single cable preparation tool.
Abstract:
An outlet door assembly that is retainable in both an open and a closed position is presented. In accordance with the present invention, the door comprises a pair of mounting arms having inwardly extending protrusions which are received in notches for retaining the door in the closed and open position. In one embodiment the connector housing has an outwardly extending protrusion within each of a pair of notches to define the positions for retaining the protrusions on the door arms. In another embodiment a door holder is employed which has pairs of notches, with one pair of notches receiving the protrusions of the door arms therein for retaining the door in a closed position and another pair of notches receiving the protrusions of the door arms therein for retaining the door in an open position. In both embodiments the door includes a channel for receiving an identification icon therein.
Abstract:
Devices in which components of medical kits are carried are identifiable by means other than by the naked eye. The means for identification is attached to or integral with the device and may comprise raised and lowered surfaces that can be read by touch; serrations disposed on an edge or surface; a fluorescent coating viewable under infrared or ultraviolet light; or a pattern that is viewable using a thermal imaging device such as night vision goggles. A package for retaining a medical item includes an identifying element of a material that is selectively viewable in response to light attributes of the material. A device for the visual identification of a package containing a medical item includes an identifying element comprising a material that is visually discernible in reduced-light environments via the use of night vision devices.
Abstract:
A device for promoting the clotting of blood comprises a clay material in particle form and a receptacle for containing the clay material. At least a portion of the receptacle is defined by a mesh. Another device comprises a gauze substrate and a clay material disposed on the gauze substrate. Another device is a bandage comprising a substrate, a mesh mounted on the substrate, and particles of a clay material retained in the mesh. A hemostatic sponge comprises a substrate, a hemostatic material disposed on a first surface of the substrate, and a release agent disposed on a second surface of the substrate. The release agent is disposed on the wound-contacting surface of the substrate. When treating a bleeding wound, application of the hemostatic sponge causes at least a portion of the hemostatic material to come into contact with blood through the release agent and through the substrate.
Abstract:
A hemostatic device for promoting the dotting of blood includes a gauze substrate, a clay material disposed on the gauze substrate, and also a polyol such as glycerol or the like disposed on the gauze substrate to bind the clay material. When the device is used to treat a bleeding wound, at least a portion of the clay material comes into contact with blood emanating from the wound to cause the clotting. A bandage that can be applied to a bleeding wound to promote the clotting of blood includes a flexible substrate and a gauze substrate mounted thereon. The gauze substrate includes a clay material and a polyol. A hemostatic sponge also includes a gauze substrate and a dispersion of hemostatic material and a polyol on a first surface of the substrate.
Abstract:
A hemostatic device for promoting the clotting of blood includes a gauze substrate, a clay material disposed on the gauze substrate, and also a polyol such as glycerol or the like disposed on the gauze substrate to bind the clay material. When the device is used to treat a bleeding wound, at least a portion of the clay material comes into contact with blood emanating from the wound to cause the clotting. A bandage that can be applied to a bleeding wound to promote the clotting of blood includes a flexible substrate and a gauze substrate mounted thereon. The gauze substrate includes a clay material and a polyol. A hemostatic sponge also includes a gauze substrate and a dispersion of hemostatic material and a polyol on a first surface of the substrate.
Abstract:
Disclosed are device for promoting the clotting of blood comprising a clay material and a release agent. In some embodiments, the clay material is disposed within a substrate and the release agent is disposed within a mesh. The release agent can be configured to make direct contact with a bleeding wound when the device is in particle form and the clay material can promote hemostasis.
Abstract:
A hemostatic agent comprises diatomaceous earth in particle form. Devices for promoting hemostasis comprise diatomaceous earth in particle form and a receptacle for retaining the particles therein. The receptacle is defined by a mesh having openings therein. A hemostatic sponge comprises a substrate, diatomaceous earth disposed on the substrate, and a release agent disposed on the substrate. A hemostatic sponge may also comprise a film into which diatomaceous earth is incorporated, or it may comprise a substrate, diatomaceous earth disposed on the substrate, and a film disposed over the diatomaceous earth. A hemostatic sponge may also comprise a first substrate, diatomaceous earth disposed on the first substrate, and a second substrate disposed on the diatomaceous earth. When treating a bleeding wound using any of the foregoing devices, application of the device causes the diatomaceous earth to come into contact with blood to cause a clotting effect.