Abstract:
A coating solution useful in the preparation of printing plate precursors comprises: a) a radiation sensitive composition C comprising a phenolic resin; b) at least one thermoplastic polymer P which has a solubility in aqueous alkaline media ranging from sparingly soluble to insoluble; c) a first solvent component A which is capable of solubilizing both composition C and thermoplastic polymer P; d) a second solvent component B having a volatility less than component A, wherein component B is capable of volatilizing composition C but not thermoplastic polymer P, and composition C and thermoplastic P are homogeneously dissolved in a mixture of components A and B; and e) at least one further polymer AP having a higher molecular weight than the phenolic resin of composition C, wherein polymer AB is miscible with the phenolic resin and immiscible with thermoplastic polymer P. The coating provides a radiation-sensitive layer for the substrate, and the coating contains homogeneously distributed thermoplastic polymer particles.
Abstract:
A radiation-sensitive composition, positive-working coating compositions useful for the preparation of lithographic printing plates and lithographic printing plate precursors comprising the composition are disclosed. The composition comprises at least one quinonediazide compound and at least one carboxylic copolymer. The compositions produce lithographic printing plates that show high print run stability.
Abstract:
A radiation-sensitive composition for use in printing plates is described. The composition comprises: (a) at least one novolak; (b) at least one naphthoquinone diazide derivative; and (c) a copolymer comprising units A, B, and a unit C comprising a cyclic terminal urea group, wherein unit A is present in an amount of about 5 to about 50 mol % and has the formula is represented by wherein R1 is selected such that the homopolymer of A is alkali-soluble, unit B is present in an amount of about 20 to about 70 mol % and has the following formula is represented by wherein R2 is selected such that the homopolymer of B has a glass transition temperature greater than 100° C., preferably a glass transition temperature in the range from about 100 to about 380° C., and the unit C comprising a cyclic terminal urea group is present in an amount of about 10 to about 50 mol % and has the formula is represented by wherein X is a spacer group which is preferably selected from the group consisting of (a) a —(CR2)m— chain, (b) a —[CH2—CH2—O]m— chain; and (c) a —[Si(R2)—O]m— unit, wherein m is an integer greater than or equal to 1, more preferably between 2 and 12, the spacer group is connected to one of the carbon ring atoms of the cyclic urea unit or to one of the nitrogen atoms of the cyclic urea unit, and n is an integer greater than or equal to 1, more preferably between 1 and 5; and Y is a group selected from the group consisting of: wherein each R in units A, B, and C, the —(CR2)m— chain, the —[Si(R2)—O]m— unit, and group Y represents a bond between the cyclic urea and the spacer group X, or is independently selected from hydrogen, aryl, (C1-C12) alkyl, and or halogen.
Abstract:
Single layer IR-sensitive negative-working imageable elements include thermally coalesceable core-shell particles without a polymeric binder in an imageable layer. Thermal imaging causes coalescence of the particles in imaged regions while non-imaged regions can be removed with plain water or an aqueous solution containing an acidic polymer.
Abstract:
A radiation-sensitive composition for use in printing plates is described. The composition comprises: (a) at least one novolak; (b) at least one naphthoquinone diazide derivative; and (c) a copolymer comprising units A, B, and a unit C comprising a cyclic terminal urea group, wherein unit A is present in an amount of about 5 to about 50 mol % and has the formula wherein R1 is selected such that the homopolymer of A is alkali-soluble, unit B is present in an amount of about 20 to about 70 mol % and has the following formula wherein R2 is selected such that the homopolymer of B has a glass transition temperature greater than 100° C., preferably a glass transition temperature in the range from about 100 to about 380° C., and the unit C comprising a cyclic terminal urea group is present in an amount of about 10 to about 50 mol % and has the formula wherein X is a spacer group which is preferably selected from the group consisting of (a) a —(CR2)m— chain, (b) a —[CH2—CH2—O]m— chain; and (c) a —[Si(R2)—O]m— unit, wherein m is an integer greater than or equal to 1, more preferably between 2 and 12, the spacer group is connected to one of the carbon ring atoms of the cyclic urea unit or to one of the nitrogen atoms of the cyclic urea unit, and n is an integer greater than or equal to 1, more preferably between 1 and 5; and Y is a group selected from the group consisting of: and wherein each R in units A, B, and C, the —(CR2)m— chain, the —[Si(R2)—O]m— unit, and group Y is independently selected from hydrogen, aryl, (C1-C12) alkyl, and halogen.
Abstract:
A singe- or multilayer lithographic printing plate precursor comprises on a substrate a radiation-sensitive coating that comprises a copolymer soluble or dispersible in aqueous alkaline solution and comprising (meth)acryl recurring units, imide recurring units, and amide recurring units derived from corresponding ethylenically unsaturated polymerizable monomers; the copolymer provides increased chemical resistance for the lithographic printing plate precursors which can be negatively or positively working.
Abstract:
Copolymers useful in radiation-sensitive layers of printing plates have the units A, B and C wherein unit A is present in an amount of 5 to a maximum of 50 mol % and R1 and R4 are selected such that the homopolymer of A is alkali-soluble, B is present in an amount of 20-70 mol % and R2, R6 and R7 are selected such that the homopolymer of B has a high glass transition temperature, and C is present in an amount of 10-50 mol % and R3 and R5 are selected such that the homopolymer of C is water-soluble and that unit A is different from unit C.
Abstract:
Radiation-sensitive compositions comprise at least one novolak, at least one naphthoquinone diazide derivative and a copolymer; the copolymer consisting of the units A, B and C wherein unit A is present in an amount of 5 to a maximum of 50 mol % and R1 and R4 are selected such that the homopolymer of A is alkali-soluble, B is present in an amount of 20 to 70 mol % and R2, R6 and R7 are selected such that the homopolymer of B has a high glass transition temperature, and C is present in an amount of 10 to 50 mol % and R3 and R5 are selected such that the homopolymer of C is water-soluble and that unit A is different from unit C. Furthermore, the invention describes printing plates produced therefrom.
Abstract:
To planarize an electroformed, magnetic metal sheet having micropatterns, the metal sheet is clamped on a magnet and is mechanically processed on the back side of the metal in such a way that it assumes a plane-parallel shape. Metal sheets can be used which are not stress-free and are obtained in a fast electroplating process. Multiple copying is possible.
Abstract:
A method is described for producing an imaged lithographic printing plate, wherein the developer comprises a hydrophilic polymer comprising (m1) structural units derived from at least one compound comprising both a polyalkylene oxide chain and a free radical polymerizable group, and (m2) structural units derived from at least one compound copolymerizable with the free radical polymerizable group of (i) and comprising at least one functional group with pKs