摘要:
A method comprising contacting a first styrenic polymer composition comprising residual styrene monomer with a molecular sieve, and recovering a second styrenic polymer composition comprising a reduced amount of residual styrene monomer. A composition comprising a styrenic polymer having a residual styrene monomer amount of less than 100 ppm produced by contacting a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm with a molecular sieve, and recovering the styrenic polymer having a residual styrene monomer amount of less than 100 ppm. A method comprising providing a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm, contacting the styrenic polymer composition with a molecular sieve, adding a nucleating agent, a foaming agent, and a coloring agent to the styrenic polymer composition, and forming an expanded styrenic polymer composition having a residual styrene monomer amount of less than 100 ppm.
摘要:
Cellular and multi-cellular polystyrene and polystyrenic foams and methods of forming such foams are disclosed. The foams include an expanded polystyrene formed from expansion of an expandable polystyrene including an adsorbent comprising alumina, wherein the multi-cellular polystyrene exhibits a multi-cellular size distribution. The process for forming a foamed article includes providing a formed styrenic polymer and contacting the formed styrenic polymer with a first blowing agent and an adsorbent comprising alumina to form extrusion polystyrene. The process further includes forming the extrusion styrenic polymer into an expanded styrenic polymer and forming the expanded styrenic polymer into a foamed article.
摘要:
A method comprising contacting a first styrenic polymer composition comprising residual styrene monomer with a molecular sieve, and recovering a second styrenic polymer composition comprising a reduced amount of residual styrene monomer. A composition comprising a styrenic polymer having a residual styrene monomer amount of less than 100 ppm produced by contacting a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm with a molecular sieve, and recovering the styrenic polymer having a residual styrene monomer amount of less than 100 ppm. A method comprising providing a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm, contacting the styrenic polymer composition with a molecular sieve, adding a nucleating agent, a foaming agent, and a coloring agent to the styrenic polymer composition, and forming an expanded styrenic polymer composition having a residual styrene monomer amount of less than 100 ppm.
摘要:
Disclosed is a composition comprising an impact modified polystyrene prepared using a process comprising dissolving a styrene-butadiene-styrene block copolymer in styrene monomer and polymerizing the styrene monomer wherein the impact modified polystyrene has a haze value of less than or equal to 12 percent. Also disclosed is an impact modified polystyrene prepared using the same process and having a ratio of Mz/Mn of at least 4.1.
摘要:
Disclosed are blends of polystyrene and at least one of syndiotactic polypropylene, ethylene propylene copolymers, and styrene-butadiene-styrene triblock copolymers. These blends are prepared using solution polymerization and have unique morphologies and desirable physical properties. The blends can also be prepared with graft-promoting or crosslinking agents and rubbers to prepare modified high impact polystyrene.
摘要:
It has been discovered that improved polystyrene products, such as high impact polystyrene (HIPS), may be obtained by polymerizing styrene with a diene polymer in the presence of at least one multifunctional initiator. The presence of the multifunctional initiator tends to cause more branched structures in the polystyrene. Unexpectedly, the ratio of % gel to % rubber (G/R or rubber phase volume) increases as the swell index increases which is the opposite of the conventional trend. Additionally, acceptable G/R values can be achieved at increased polymerization rates with these initiators.
摘要:
A styrenic composition including a polar modified styrenic co-polymer resulting from the polymerization of a combined mixture of at least one styrenic monomer and at least one comonomer and a biodegradable component is disclosed. The at least one comonomer includes a polar functional group and the polar modified styrenic co-polymer and the biodegradable component are combined to obtain a styrenic composition having a biodegradable component. Also disclosed is a method of enhancing bio-polymer miscibility in a styrenic based polymer. The polarity of a blend is manipulated by combining a styrenic monomer and a polar co-monomer to form a combined mixture and subjecting the combined mixture to polymerization to obtain a styrenic polymer blend to which a bio-polymer is added.
摘要:
Disclosed are blends of polystyrene and at least one of syndiotactic polypropylene, ethylene propylene copolymers, and styrene-butadiene-styrene triblock copolymers. These blends are prepared using solution polymerization and have unique morphologies and desirable physical properties. The blends can also be prepared with graft-promoting or crosslinking agents and rubbers to prepare modified high impact polystyrene.
摘要:
The present invention provides an apparatus and method of reducing volatiles in a mass processable polymer. The apparatus includes a multi-chambered devolatilizer having first and second collectors contained therein. In one embodiment, the invention provides a method that includes passing the mass processable polymer stream from a polymerization process to a first devolatilizer. The method continues by passing the polymer stream from the first devolatilizer to the multi-chambered devolatilizer. The apparatus and method allows for the production of a polymer having less than 100 ppm of volatiles.
摘要:
It has been discovered that improved polystyrene products may be obtained by polymerizing styrene in the presence of p-t-butyl styrene (TBS) and optionally at least one di-olefinic substituted aromatic compound, such as isopropenyl styrene, sec-butenyl styrene, m-isobutenyl styrene, p-diisopropenyl benzene, diallyl benzene, and/or diallyl phthalate. The resulting copolymers have a higher glass transition temperature (Tg), a higher molecular weight distribution (MWD), a higher Mz, and a lower melt flow index (MFI) as compared with a polymerized product made by an otherwise identical method except that TBS and/or the di-olefinic substituted aromatic compound are not used. These copolymers are also more highly branched as compared with a polymerized product made by an otherwise identical method in the absence of TBS and/or a di-olefinic substituted aromatic compound.