Abstract:
A method comprising contacting a first styrenic polymer composition comprising residual styrene monomer with a molecular sieve, and recovering a second styrenic polymer composition comprising a reduced amount of residual styrene monomer. A composition comprising a styrenic polymer having a residual styrene monomer amount of less than 100 ppm produced by contacting a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm with a molecular sieve, and recovering the styrenic polymer having a residual styrene monomer amount of less than 100 ppm. A method comprising providing a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm, contacting the styrenic polymer composition with a molecular sieve, adding a nucleating agent, a foaming agent, and a coloring agent to the styrenic polymer composition, and forming an expanded styrenic polymer composition having a residual styrene monomer amount of less than 100 ppm.
Abstract:
A method comprising contacting a first styrenic polymer composition comprising residual styrene monomer with a molecular sieve, and recovering a second styrenic polymer composition comprising a reduced amount of residual styrene monomer. A composition comprising a styrenic polymer having a residual styrene monomer amount of less than 100 ppm produced by contacting a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm with a molecular sieve, and recovering the styrenic polymer having a residual styrene monomer amount of less than 100 ppm. A method comprising providing a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm, contacting the styrenic polymer composition with a molecular sieve, adding a nucleating agent, a foaming agent, and a coloring agent to the styrenic polymer composition, and forming an expanded styrenic polymer composition having a residual styrene monomer amount of less than 100 ppm.
Abstract:
Expanded polystyrene, foamed articles and methods of making the same are described herein. The expanded polystyrene generally includes polystyrene selected from expandable polystyrene and extrusion polystyrene, the polystyrene exhibiting a molecular weight of from about 130,000 Daltons to about 220,000 Daltons; a melt flow index of from about 20 to about 30 and a density of from about 0.1 lb/ft3 to about 10 lb/ft3; and wherein the expanded polystyrene exhibits a density of from about 0.1 lb/ft3 to about 10 lb/ft3.
Abstract translation:膨胀聚苯乙烯,发泡制品及其制备方法在本文中描述。 发泡聚苯乙烯通常包括选自可发性聚苯乙烯和挤出聚苯乙烯的聚苯乙烯,聚苯乙烯的分子量为约130,000道尔顿至约220,000道尔顿; 熔体流动指数为约20至约30,密度为约0.1lb / ft 3至约10lb / ft 3; 并且其中所述发泡聚苯乙烯的密度为约0.1lb / ft 3至约10lb / ft 3。
Abstract:
A method of preparing a refrigeration insulation liner comprising forming a multilayer polymeric sheet comprising at least one foam layer and at least one solid layer disposed adjacent to the foam layer, shaping the multilayer polymeric sheet into the liner, wherein the liner is an insulator, wherein the layers of the sheet adhered to each other by melt extrusion, and wherein the liner resists degradation in the event of contact with a refrigerant. A method of preparing a refrigeration device liner comprising coextruding a foamed polystyrene layer between two solid layers of high impact polystyrene to form a sheet, thermoforming the sheet into the liner, and incorporating the liner into the refrigeration device. A method of forming a multilayer polymeric sheet comprising melting a first styrenic polymer composition, melting and foaming a second styrenic polymer composition, and coextruding the first and second styrenic polymer compositions to form a multilayer polymeric sheet.
Abstract:
Embodiments of the present invention include a branched aromatic ionomer, and a process of making it, by co-polymerizing a first monomer comprising an aromatic moiety and an unsaturated alkyl moiety and a second monomer represented by the general formula: [R-AZ]y-MX wherein R is a hydrocarbon chain having from 2 to 40 carbons and at least one polymerizable unsaturation; A is an anionic group; M is a cationic group; Z is −1 or −2; X is +1, +2, +3, +4, or +5; and y is an integer having a value of from 1 to 4. The branched aromatic ionomer has a melt flow index ranging from 1.0 g/10 min. to 13 g/10 min. Optionally the melt flow index ranges from 1.3 g/10 min. to 1.9 g/10 min.
Abstract:
A monovinylidene aromatic polymer with a melt flow index of at least 7 g/10 min and a Vicat softening temperature of at least 200° F. may be useful for injection molding with reduced cycle time. The monovinylidene aromatic polymer may be general purpose polystyrene or high impact polystyrene. It may include reduced amounts of mineral oil and increased amounts of an additive such as zinc dimethacrylate to optimize its processability and mechanical characteristics.