摘要:
A nickel-based superalloy that forms a chromia scale in an oxidizing environment is disclosed. The alloy provides good oxidation resistance at temperatures below 900° C. in a dry or moist atmosphere. The superalloy is suited for components of gas or steam turbine engines including blades and vanes.
摘要:
A method of forming a rotor for a turbine engine such that the rotor is formed of two materials including: an outer ring formed from a first steel material, and a disk formed from a second material, such as a low alloy steel, having a larger thermal expansion coefficient than the first material forming the inner disk. The ring may include an inner aperture having a conical shape, and the disk may have an outer surface with a conical shape and a diameter with a portion that is larger than a portion of the ring. The ring may be heated such that the aperture expands to a size greater than the largest diameter of the inner disk. The ring may be positioned over the disk and allowed to cool to allow the ring to be attached to the disk. The ring and disk may then be co-forged.
摘要:
A component for use in a turbine engine including a first member and a second member associated with the first member. The second member includes a plurality of connecting elements extending therefrom. The connecting elements include securing portions at ends thereof that are received in corresponding cavities formed in the first member to attach the second member to the first member. The connecting elements are constructed to space apart a first surface of the second member from a first surface of the first member such that at least one cooling passage is formed between adjacent connecting elements and the first surface of the second member and the first surface of the first member.
摘要:
A nickel-based superalloy that forms a chromia scale in an oxidizing environment is disclosed. The alloy provides good oxidation resistance at temperatures below 900° C. in a dry or moist atmosphere. The superalloy is well-suited for components of gas or steam turbine engines including blades and vanes.
摘要:
A system for forming a surface coating on an outer surface of a foam for use with cooling system of turbine engines. The system may include removing filler from the outer surface of the foam to expose a porous structure of the foam, whereby portions of the porous structure extend outwardly from a newly formed outer surface of the filler. A surface layer may be applied to the outer surface of the filler and exposed portions of the porous structure, whereby the surface layer is attached to the porous structure at least in part due to mechanical interaction with the portions of the porous structure extending outwardly from the newly formed outer surface of the filler. The filler material may then be removed from the porous structure.
摘要:
A turbine airfoil system for forming a turbine airfoil that is usable in a turbine engine. The airfoil may be formed from a porous material shaped into an outer airfoil shape. The porous material may include an inner central spar capable of supporting the turbine airfoil an outer porous region and an outer coating. The porous material facilitates efficient cooling of the turbine airfoil.
摘要:
A method of forming a rotor for a turbine engine such that the rotor is formed of two materials including: an outer ring formed from a first steel material, and a disk formed from a second material, such as a low alloy steel, having a larger thermal expansion coefficient than the first material forming the inner disk. The ring may include an inner aperture having a conical shape, and the disk may have an outer surface with a conical shape and a diameter with a portion that is larger than a portion of the ring. The ring may be heated such that the aperture expands to a size greater than the largest diameter of the inner disk. The ring may be positioned over the disk and allowed to cool to allow the ring to be attached to the disk. The ring and disk may then be co-forged.
摘要:
A heat treatment process for a component of a turbine engine formed from multiple materials, such as steel and nickel. The heat treatment process includes two stages: a first stage for austinitizing the steel and solutioning the nickel, and a second stage for ageing and tempering the materials. The heat treatment process may include heating a component formed from a steel portion and a nickel portion such that the steel portion austinitizes and the nickel portion undergoes solutioning, cooling the component to prevent the excessive formation of gamma prime ({grave over (y)}), and subjecting the component to a temper heat treatment during which martensite tempering occurs.
摘要:
A method of forming a rotor for a turbine engine such that the rotor is formed of two materials including: an inner disk formed from a first material, such as steel, and an outer ring formed from a second material, such as a nickel alloy, having a larger thermal expansion coefficient than the first material forming the inner disk. The ring may include an inner aperture having a conical shape, and the disk may have an outer surface with a conical shape and a diameter with a portion that is larger than a portion of the ring. The ring may be heated such that the aperture expands to a size greater than the largest diameter of the inner disk. The ring may be positioned over the disk and allowed to cool to allow the ring to be attached to the disk. The ring and disk may then be co-forged.
摘要:
A method of forming a rotor for a turbine engine such that the rotor is formed of two materials including: an inner disk formed from a first material, such as steel, and an outer ring formed from a second material, such as a nickel alloy, having a larger thermal expansion coefficient than the first material forming the inner disk. The ring may include an inner aperture having a conical shape, and the disk may have an outer surface with a conical shape and a diameter with a portion that is larger than a portion of the ring. The ring may be heated such that the aperture expands to a size greater than the largest diameter of the inner disk. The ring may be positioned over the disk and allowed to cool to allow the ring to be attached to the disk. The ring and disk may then be co-forged.