Abstract:
A communication method of a terminal that may have dual connectivity to a first base station and a second base station is provided. The terminal receives a first Radio Resource Control (RRC) message from the first base station only through a first interface between the first base station and the terminal. The terminal transmits a second RRC message to the first base station only through the first interface.
Abstract:
Provided is a method of transmitting and receiving data using a persistent allocation scheme in order to effectively support a voice service between a base station and a mobile terminal in a packet based mobile communication system. When an error occurs in transmitting control information that indicates whether to use a radio resource using the persistent allocation scheme, the base station may retransmit the control information and thereby maintain a communication quality.
Abstract:
Disclosed is a method for enhancing a small cell. A method for enhancing a small cell in a terminal applying inter-site CA includes the steps of: causing a terminal to transmit the uplink control information (UCI) of at least one of the macro cells controlled by a macro cell base station through the macro cell; and causing the terminal to transmit the uplink control information of at least one of the small cells controlled by a small cell base station through the small cell.
Abstract:
A device-to-device (D2D) communication method in a wireless mobile communication system is provided. A channel state measurement method for adaptive transmission of cellular network-based D2D communication, a data transmission/reception method of D2D communication, and a power control method for transmission power control of a D2D link in the D2D communication are provided. Specifically, cellular network-based D2D communication methods optimized for a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) system are provided. The above-described methods are also applicable to various cellular mobile communication systems as well as the 3GPP LTE system.
Abstract:
Disclosed is a method for generating and transmitting a reference signal in a clustered DFT-spread OFDM transmission scheme. A method for generating and transmitting a DM-RS in a clustered DFT-spread-OFDM scheme comprises: a step of generating DM-RS sequences corresponding to the number of clusters allocated for an uplink transmission; and a step of mapping the generated DM-RS sequences to the relevant DM-RS symbol positions for each cluster. Accordingly, the method for generating and transmitting a reference signal according to the present invention, in which DM-RS sequences are allocated and transmitted on a cluster basis, uses a complete DM-RS sequence for each cluster, and therefore inter-cell interference can be weakened, and problems which might occur when applied to a multi-user MIMO (MU-MIMO) scheme can be solved.
Abstract:
Provided are a method of transmitting a dedicated reference signal (DRS), a method of receiving a DRS, and a feedback method of a terminal. The method of transmitting a DRS includes determining a DRS transmitting resource for at least one terminal which is a target of transmission, and transmitting the DRS using the determined transmission resource and notifying the terminal of information about layer used by the terminal. The method of receiving a DRS includes determining a DRS receiving resource, receiving information about layer used by a terminal from a serving cell base station, and receiving the DRS for the terminal using the determined reception resource and the information about layer. Accordingly, a terminal can find the position and sequence of its DRS. In particular, in the case of multi-user multiple input multiple output (MU-MIMO) or joint scheduling, it is possible to prevent or remove signal interference using the DRS of another terminal.
Abstract:
A technology enabling a terminal to receive acknowledgement (ACK)/negative ACK (NACK) information about data transmitted from the terminal is provided. The method includes receiving cyclic shift information for a reference signal from the base station; transmitting, to the base station, the data and a reference signal which is cyclic-shifted using a cyclic shift value, the cyclic shift value being determined based on a dynamic cyclic shift value mapped one-to-one to the cyclic shift information for the reference signal; and receiving, from the base station, the ACK/NACK information about the transmitted data through a radio resource of a downlink channel, the radio resource of the downlink channel being identified based on a modifier mapped one-to-one to the cyclic shift information for the reference signal.
Abstract:
The present invention provides a method of performing a position measurement on the basis of a signal from a global navigation satellite system (GNSS). The method includes: receiving initial position information; estimating an initial value of a multipath error through a measurement of the GNSS signal on the basis of the received initial position information; estimating a multipath error from the initial value of the multipath error on the basis of a change in the measurement; removing the estimated multipath error from the measurement of the GNSS signal; and performing the position measurement on the basis of the GNSS measurement from which the multipath error is removed.
Abstract:
Provided is a method of transmitting and receiving data using a persistent allocation scheme in order to effectively support a voice service between a base station and a mobile terminal in a packet based mobile communication system. When an error occurs in transmitting control information that indicates whether to use a radio resource using the persistent allocation scheme, the base station may retransmit the control information and thereby maintain a communication quality.
Abstract:
A method of transmitting and receiving a control channel in a wireless communication system is provided. A base station allocates a data channel to a radio resource, adds start position information of the data channel into a payload of a control channel, and performs signaling for indication information on the start position information added into the payload of the control channel to a terminal. Accordingly, the legacy system and the enhanced system can efficiently transmit a control channel.