摘要:
A heat treatment apparatus including: a processing container for processing wafers held in a boat; heaters for heating the processing container; and a control section for controlling the heaters. Heater temperature sensors are provided between the heaters and the processing container, in-container temperature sensors are provided in the processing container, and movable temperature sensors are provided in the boat. The temperature sensors are connected to a temperature estimation section. The temperature estimation section selects two of the three types of temperature sensors, e.g. the movable temperature sensors and the in-container temperature sensors, and determines the temperature of a wafer according to the following formula: T=T1×(1−α)+T2×α, α>1, where T1 and T2 represent detection temperatures of the selected temperature sensors, and α represents a mixing ratio.
摘要:
This invention provides an antibody targeting a cancer antigenic protein specifically expressed on the surface of cancer cells and use thereof as a therapeutic and/or preventive agent for cancer. More specifically, the present invention provides an antibody, or a fragment thereof which has immunological reactivity with a partial CAPRIN-1 polypeptide consisting of the amino acid sequence shown by SEQ ID NO: 5 or an amino acid sequence having 80% or higher sequence identity to the amino acid sequence, and a pharmaceutical composition for treatment and/or prevention of cancer comprising the same as an active ingredient.
摘要翻译:本发明提供靶向癌细胞表面特异性表达的癌抗原蛋白的抗体及其作为癌症治疗和/或预防剂的用途。 更具体地,本发明提供了与由SEQ ID NO:5所示的氨基酸序列或具有80%以上序列同一性的氨基酸序列组成的部分CAPRIN-1多肽具有免疫学反应性的抗体或其片段 和用于治疗和/或预防癌症的药物组合物,其包含其作为活性成分。
摘要:
It is intended to identify a cancer antigenic protein specifically expressed on the surface of cancer cells and to provide an antibody targeting the antigenic protein and use of the antibody as a therapeutic and/or preventive agent for cancer. The present invention provides an antibody or a fragment thereof which has immunological reactivity with a CAPRIN-1 protein, the antibody comprising a heavy chain variable region comprising amino acid sequences of SEQ ID NOs: 5, 6, and 7 and a light chain variable region comprising amino acid sequences of SEQ ID NOs: 9, 10, and 11, and a pharmaceutical composition for treatment and/or prevention of cancer, comprising this antibody or fragment as an active ingredient.
摘要翻译:旨在鉴定在癌细胞表面上特异性表达的癌抗原蛋白,并提供靶向抗原蛋白的抗体和使用抗体作为癌症的治疗和/或预防剂。 本发明提供了与CAPRIN-1蛋白具有免疫反应性的抗体或其片段,所述抗体包含包含SEQ ID NO:5,6和7的氨基酸序列的重链可变区和轻链可变区 包含SEQ ID NO:9,10和11的氨基酸序列,和包含该抗体或片段作为活性成分的用于治疗和/或预防癌症的药物组合物。
摘要:
An object of the present invention is to prepare an antibody that targets CAPRIN-1 specifically expressed on the surface of cancer cells and is superior in antitumor activity to conventional antibodies and to provide use of the antibody as a therapeutic and/or preventive agent for cancer. The present invention provides use of an antibody targeting an identified cancer antigenic protein specifically expressed on the surface of cancer cells as a therapeutic and/or preventive agent for cancer, specifically, a pharmaceutical composition for treatment and/or prevention of cancer, comprising as an active ingredient an antibody or a fragment thereof which has immunological reactivity with a CAPRIN-1 protein, the antibody or the fragment thereof comprising a heavy chain variable region comprising amino acid sequences represented by SEQ ID NOs: 5, 6, and 7 and a light chain variable region comprising amino acid sequences represented by SEQ ID NOs: 9, 10, and 11.
摘要:
A heat treatment apparatus including: a processing container for processing wafers held in a boat; heaters for heating the processing container; and a control section for controlling the heaters. Heater temperature sensors are provided between the heaters and the processing container, in-container temperature sensors are provided in the processing container, and movable temperature sensors are provided in the boat. The temperature sensors are connected to a temperature estimation section. The temperature estimation section selects two of the three types of temperature sensors, e.g. the movable temperature sensors and the in-container temperature sensors, and determines the temperature of a wafer according to the following formula: T=T1×(1−α)+T2×α, α>1, where T1 and T2 represent detection temperatures of the selected temperature sensors, and α represents a mixing ratio.
摘要:
The present invention relates to a pharmaceutical composition for treatment and/or prevention of cancer, which comprises, as an active ingredient, an antibody or fragment thereof having an immunological reactivity with a CAPRIN-1 protein or a fragment thereof comprising 7 or more consecutive amino acids.
摘要:
The present invention provides a heat treatment apparatus having a high degree of freedom of an outlet design and capable of adjusting the rate of a reduction in the temperature of each part of a heater without using an adjustment valve. The heat treatment apparatus having a simple flow path structure can be constructed with simplified sealing and a reduced cost.The heat treatment apparatus 1 includes a process chamber 2, a tubular heater 3, a heat exhaust system 25 and a cooling section 26. The process chamber 2 accommodates objects W to be placed in multiple stages and to be treated. A predetermined heat treatment is performed in the process chamber. The heater 3 surrounds an outer circumference of the process chamber 2 and heats the objects W to be treated. The heat exhaust system 25 is adapted to exhaust an atmosphere present in a space 24 existing between the heater 3 and the process chamber 2. The cooling section 26 is adapted to blow a cooling fluid into the space 24 to cool the atmosphere. The heater 3 includes a tubular heat insulator 17, a heat generating resistor 18 and an outer shell 20. The heat generating resistor 18 is provided on an inner circumference of the heat insulator 17. The outer shell 20 is provided on an outer circumference of the heat insulator 17. The cooling section 26 includes at least one annular flow path 28 and an outlet 29. The annular flow path 28 is arranged between the heat insulator 17 and the outer shell 20. The outlet 29 is provided in the heat insulator 17. The outlet 29 is arranged to ensure that the cooling fluid is blown out of the outlet 29 toward a vertical central axis of the heat insulator 17 or in a direction oblique to the direction toward vertical central axis of the heat insulator 17.
摘要:
A pressure sensitive adhesive sheet comprising a substrate and an adhesive composition which is coated on the surface of the substrate. The main components of the adhesive composition are (a) a copolymer comprising monomeric units of an acrylic ester, (b) monomeric units of a polar acrylic compound, (c) monomeric units of a high glass transition temperature (Tg) macromonomer having a Tg of 20.degree. C. or above, (d) monomeric units of a low Tg macromonomer having a Tg of below 20.degree. C. and (e) monomeric units of an oligomer having telechelic thiol functional groups. The pressure sensitive adhesive sheet has excellent adhesive strength, resistance against formation of blisters and removability upon heating.
摘要:
An adhesive sheet according to the present invention comprises a substrate having coated on the surface thereof an adhesive layer consisting of an adhesive and a radiation polymerizable compound, which compound is a urethane acrylate oligomer having a molecular weight of 3,000-10,000, preferably 4,000-8,000. The adhesive sheet is preferably used in subjecting semiconductor wafers to dicing operation and no adhesive sticks to and remains on the back side surface of the wafer chips as picked up.
摘要:
An aperture card reader is equipped with a unit detachably mountable on the main body for automatically feeding aperture cards. The aperture card can automatically be placed between presser plates while the unit is mounted on the main body or, alternatively, can be manually fed when the unit is detached from the main body. The aperture card is automatically fed between the presser plates with the card in a position in which the minor sides of the aperture card are oriented in the direction of feed, while the card can be manually placed between the presser plates by feeding the card in a position in which the major sides of the card are oriented in the direction of feed. The image of the microfilm mounted on the aperture card can be projected on a screen in a horizontal position when the card is fed automatically, or in a vertical position when the card is fed manually.