摘要:
Aspects of the present invention provide solutions for projecting slack in an integrated circuit. A statistical static timing analysis (SSTA) is computed to get a set of Gaussian distributions over a plurality of variation sources in the integrated circuit. Based on the Gaussian distributions, a truncated subset and a remainder subset of the Gaussian distributions are identified. Then data factors that represent a ratio between the remainder subset and the truncated subset are obtained. These data factors are applied to the SSTA to root sum square (RSS) project the slack for the integrated circuit that takes into account the absence of the truncated subset.
摘要:
A statistical single library that includes on-chip variation (OCV) is created for timing and power analysis of a digital chip design. Initially, library values for all cells of a digital chip design, including ranges for environmental and process parameters, are subject to a statistical model to create statistical timing for the ranges of the parameters. A statistical timing tool is applied across the ranges of the parameters to determine statistical corners for delay and input power to a subset of cells. The statistically determined delay and input power to the subset of cells is entered into the statistical single library. Each delay of each statistical corner for the subset of cells is compared with a chip sign-off statistical delay requirement of a test macro.
摘要:
A plurality of digital circuits are manufactured from an identical circuit design. A power controller is operatively connected to the digital circuits, and a non-transitory storage medium is operatively connected to the power controller. The digital circuits are classified into different voltage bins, and each of the voltage bins has a current leakage limit. Each of the digital circuits has been previously tested to operate within a corresponding current leakage limit of a corresponding voltage bin into which each of the digital circuits has been classified. The non-transitory storage medium stores boundaries of the voltage bins as speed-binning test data. The power controller controls power-supply signals applied differently for each of the digital circuits based on which bin each of the digital circuit has been classified and the speed-binning test data.
摘要:
An approach for covering multiple selective timing corners in a single statistical timing run is described. In one embodiment, a single statistical timing analysis is run on the full parameter space that covers unlimited process parameters/environment conditions. Results from the statistical timing analysis are projected for selected corners. Timing closure is performed on the corners having the worst slacks.
摘要:
Systems and methods for statistical clock cycle computation and closing timing of an integrated circuit design to a maximum clock cycle or period. The method includes loading a design and timing model for at least one circuit path of an integrated circuit or a region of the integrated circuit into a computing device. The method further includes performing a statistical static timing analysis (SSTA) of the at least one circuit path using the loaded design and timing model to obtain slack canonical data. The method further includes calculating a maximum circuit clock cycle for the integrated circuit or the specified region of the integrated circuit in linear canonical form based upon the slack canonical data obtained from the SSTA.
摘要:
In embodiments of a statistical static timing analysis (SSTA) method, system and program storage device, the interdependence between the setup time and hold time margins of a circuit block (e.g., a latch, flip-flop, etc., which requires the checking of setup and hold timing constraints) is determined, taking into account possible variations in multiple parameters (e.g., using a variation-aware characterizing technique). A parameterized statistical static timing analysis (SSTA) of a circuit incorporating the circuit block is performed in order to determine, in statistical parameterized form, setup and hold times for the circuit block. Based on the interdependence between the setup and hold time margins, setup and hold time constraints can be determined in statistical parameterized form. Finally, the setup and hold times determined during the SSTA can be checked against the setup and hold time constraints to determine, if the time constraints are violated or not and to what degree.
摘要:
A computer-implemented method that simulates NPskew effects on a combination NFET (Negative Field Effect Transistor)/PFET (Positive Field Effect Transistor) semiconductor device using slew perturbations includes performing a timing test by a computing device, by: (1) evaluating perturb slews in Strong N/Weak P directions on the combination semiconductor device for a timing test result; (2) evaluation perturb slews in Weak N/Strong P directions on the combination semiconductor device for a timing test result; and (3) evaluating unperturbed slews in a balanced condition on the combination semiconductor device for a timing test result. After each test is performed, a determination is made as to which evaluation of the perturbed and unperturbed slews produces a most conservative timing test result for the combination semiconductor device. An NPskew effect adjusted timing test result is finally output based on determining the most conservative timing test result.
摘要:
An approach for covering multiple selective timing corners in a single statistical timing run is described. In one embodiment, a single statistical timing analysis is run on the full parameter space that covers unlimited process parameters/environment conditions. Results from the statistical timing analysis are projected for selected corners. Timing closure is performed on the corners having the worst slacks.
摘要:
A method, system and program product are disclosed for improving an IC design that prioritize failure coefficients of slacks that lead to correction according to their probability of failure. With an identified set of independent parameters, a sensitivity analysis is performed on each parameter by noting the difference in timing, typically on endpoint slacks, when the parameter is varied. This step is repeated for every independent parameter. A failure coefficient is then calculated from the reference slack and the sensitivity of slack for each of the timing endpoints and a determination is made as to whether at least one timing endpoint fails a threshold test. Failing timing endpoints are then prioritized for modification according to their failure coefficients. The total number of runs required is one run that is used as a reference run, plus one additional run for each parameter.
摘要:
A method, system and program product are disclosed for improving an IC design that prioritize failure coefficients of slacks that lead to correction according to their probability of failure. With an identified set of independent parameters, a sensitivity analysis is performed on each parameter by noting the difference in timing, typically on endpoint slacks, when the parameter is varied. This step is repeated for every independent parameter. A failure coefficient is then calculated from the reference slack and the sensitivity of slack for each of the timing endpoints and a determination is made as to whether at least one timing endpoint fails a threshold test. Failing timing endpoints are then prioritized for modification according to their failure coefficients. The total number of runs required is one run that is used as a reference run, plus one additional run for each parameter.