摘要:
The present invention relates to a process for producing a Fischer-Tropsch synthesis catalyst wherein from 15 to 40 mol. % of the cobalt thereon is in the form of cobalt oxide. The present invention also relates to a start-up process for a reduced-and-passivated cobalt-containing Fischer-Tropsch catalyst, wherein from 15 to 40 mol. % of the cobalt thereon is in the form of cobalt oxide and the reduced-and-passivated catalyst is activated by contacting the catalyst with a syngas stream.
摘要:
The present invention relates to a process for conveniently preparing a supported cobalt-containing Fischer-Tropsch synthesis catalyst having improved activity and selectivity for C5+ hydrocarbons. In one aspect, the present invention provides a process for preparing a supported cobalt-containing Fischer-Tropsch synthesis catalyst, said process comprising the steps of: (a) impregnating a support material with: i) a cobalt-containing compound and ii) acetic acid, or a manganese salt of acetic acid, in a single impregnation step to form an impregnated support material; and (b) drying and calcining the impregnated support material; wherein the support material impregnated in step (a) has not previously been modified with a source of metal other than cobalt; and wherein when the cobalt-containing compound is cobalt hydroxide, a manganese salt of acetic acid is not used in step (a) of the process.
摘要:
The present invention relates to a process for preparing a cobalt-containing Fischer-Tropsch synthesis catalyst with good physical properties and high cobalt loading. In one aspect, the present invention provides a process for preparing a supported cobalt-containing Fischer-Tropsch synthesis catalyst, said process comprising the steps of: (a) impregnating a support material with cobalt haydroxide nitrate, or a hydrate thereof, of formula (I) below to form an impregnated support material, [Co(OH)x(NO3)(2-x).yH2O] (I) where: 0
摘要:
Porous, extruded titania-based materials further comprising one or more acids and/or prepared using one or more acids, Fischer-tropsch catalysts comprising them, uses of the foregoing, processes for making and using the same and products obtained from such processes.
摘要:
Porous, extruded titania-based materials further comprising zirconium oxide and/or prepared using ammonium zirconium carbonate, Fischer-tropsch catalysts comprising them, uses of the foregoing, processes for making and using the same and products obtained from such processes.
摘要:
The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
摘要:
A redox ammoximation process in which a ketone or aldehyde is reacted with ammonia and oxygen in the presence of a catalyst, wherein: the catalyst is an aluminophosphate based redox catalyst having the qualitative general formula (I) M1M2AlPO-5 (I) in which M1 is at least one transition metal atom having redox catalytic capability; M2 is at least one metal atom in the (IV) oxidation state; M1 and M2 are different from each other; and a proportion of the phosphorous atoms in the M1M2AlPO-5 type structure are replaced by M2 atoms.
摘要:
A redox ammoximation process in which a ketone or aldehyde is reacted with ammonia and oxygen in the presence of a catalyst, wherein: the catalyst is an aluminophosphate based redox catalyst having the qualitative general formula (I) M1M2AlPO-5 (I) in which M1 is at least one transition metal atom having redox catalytic capability; M2 is at least one metal atom in the (IV) oxidation state; M1 and M2 are different from each other; and a proportion of the phosphorous atoms in the M1M2AlPO-5 type structure are replaced by M2 atoms.