Abstract:
A vehicle air-conditioning system includes a primary loop coupled to an air-conditioner that cools a refrigerant in the primary cooling loop for delivery to a primary heat exchanger, a secondary cooling loop in communication with the primary heat exchanger, wherein cooling from the refrigerant is transferred to a coolant in the secondary cooling loop and a secondary heat exchanger for transferring cooling from the coolant to air delivered to a rear of a vehicular passenger cabin.
Abstract:
A HVAC system including a multi-function unit for conditioning and controlling the flow of refrigerant. The multi-function unit may be contained within a housing that houses a receiver/dryer, integral heat exchanger and thermal expansion valve.
Abstract:
An engine compartment fire suppression system for an HVAC system of a vehicle monitors conditions including, but not limited to, a collision sensor, an air conditioning system pressure sensor, engine coolant temperature, exhaust gas temperature, or an engine load calculation. The fire suppression system discharges a fire suppression composition when a controller receives a specified combination of the monitored conditions.
Abstract:
A thermal management system for a vehicle includes a heat exchange unit coupled with a compartment of the vehicle via an interface in the compartment. A container is moveable between a first position and a second position. The container is configured to be in fluid communication with the heat exchange unit via the interface in the first position.
Abstract:
A heat pump includes a refrigerant loop. The refrigerant loop includes an accumulator having an inlet and an outlet, a compressor, a first heat exchanger, and a first coupling point. The compressor includes a low-pressure inlet and an outlet. The low-pressure inlet is downstream of the outlet of the accumulator. The first heat exchanger includes an inlet and an outlet. The first coupling point is positioned immediately downstream of the outlet of the accumulator and immediately upstream of the low-pressure inlet of the compressor. The first coupling point is immediately downstream of the outlet of the first heat exchanger such that a first heat exchange fluid circulating through the refrigerant loop is directed to the low-pressure inlet of the compressor upon exiting the outlet of the first heat exchanger.
Abstract:
A heat pump includes a refrigerant loop. The refrigerant loop includes a compressor, a first condenser, a vapor generator having a first region and a second region, a first expansion valve, a second expansion valve, and a first evaporator. A branching point is positioned between the first condenser and the vapor generator. The branching point diverts a portion of a first heat exchange fluid circulating through the refrigerant loop to the vapor generator. The first expansion valve is positioned between the branching point and the vapor generator. An outlet of the vapor generator is coupled to a mid-pressure inlet port of the compressor.
Abstract:
A thermal management system for a vehicle includes a heat exchange unit coupled with a compartment of the vehicle via an interface in the compartment. A container is moveable between a first position and a second position. The container is configured to be in fluid communication with the heat exchange unit via the interface in the first position.
Abstract:
This disclosure relates to an electrified vehicle having a cabin pre-cooling strategy for managing battery and cabin cooling loads. A corresponding method is also disclosed. An example electrified vehicle includes a battery for propulsion, a cabin, a thermal management system configured to thermally condition both the battery and the cabin, and a controller configured to follow a cabin pre-cooling strategy to pre-cool the cabin when an expected cooling load of the battery, if the electrified vehicle were to be driven in present conditions, exceeds an upper battery cooling load threshold.
Abstract:
A method for defogging a window of a vehicle includes steps of automatically selecting a climate control system operating mode and determining a risk of window fogging. The climate control system operating mode is selected from an outside air mode, an air-conditioning mode, and a defrost mode. A controller determines the risk of window fogging according to one or more inputs, and the same or a different controller may automatically select the climate control system operating mode. The controller is configured to increase a climate control system blower speed to increase a rate of airflow provided by the currently-actuated climate control system operating mode. The controller may sequentially advance the climate control system operating mode through the outside air mode, air-conditioning mode, and defrost mode.
Abstract:
A vehicle thermal management system including an electric powertrain, a single thermal loop, and a controller is provided. The electric powertrain includes a high voltage battery. The single thermal loop is for managing thermal conditions of the high voltage battery and a vehicle cabin and may include a climate control system, a blower, and a front evaporator in fluid communication with the vehicle cabin. The controller is programmed to, responsive to detection of a climate control system off request, output a command to direct the blower to push air through a heater core to the vehicle cabin at a predetermined temperature such that a temperature within the vehicle cabin is maintained at a predetermined temperature and refrigerant continues to flow through the front evaporator. The system may include a vehicle cabin temperature sensor and an ambient temperature sensor, each in electrical communication with the controller.