Abstract:
The disclosure relates to technology for providing power, voltage, and/or current from a combination of DC power sources, such as photovoltaic modules or DC batteries. One aspect includes a buck-boost optimizer having a number of inductorless buck stages and a boost stage. The buck-boost optimizer may be used within a power generation system. The combined output voltages of each of the buck stages may be input to the boost stage. The boost stage may have an inductor that may serve as an energy storage device to boost a voltage, as well as to filter a signal from the buck stages. Thus, the buck-boost optimizer may use a single inductor. Having a single inductor provides for a very efficient power generation system. Also, cost and size of components in the power generation system may be reduced.
Abstract:
A system comprises an input power stage coupled to a primary side of a transformer, an output power stage coupled to a secondary side of a transformer, a first common node capacitor and a common node resistor connected in series between a midpoint of the secondary side of the transformer and ground and a detector having an input connected to a common node of the first common node capacitor and the common node resistor, and an output connected to a control circuit, wherein the control circuit is configured to dynamically adjust a switching frequency of the system based upon an output of the detector.
Abstract:
An apparatus includes a pulse-width modulation (PWM) generator configured to generate a PWM signal for controlling a power switch of a power converter, a bias switch and a bias capacitor connected in series and coupled to a magnetic winding of the power converter and a comparator having a first input connected to the bias capacitor, a second input connected to a predetermined reference and an output configured to generate a signal for controlling the bias switch to allow a magnetizing current from the magnetic winding to charge the bias capacitor when a voltage across the bias capacitor is less than the predetermined reference.
Abstract:
A converter comprises a switch network coupled to a power source, wherein the switch network comprises a plurality of power switches, a magnetic device coupled to the switch network, a detector coupled to the magnetic device through a magnetic coupling and a control circuit configured to receive a zero voltage switching signal from the detector and adjust gate drive signals of the power switches based upon the zero voltage switching signal.
Abstract:
A method comprises providing a buck-boost converter comprising a first high-side switch and a first low-side switch connected in series across an input capacitor, a second high-side switch and a second low-side switch connected in series across an output capacitor and an inductor coupled between a common node of the first high-side switch and the first low-side switch, and a common node of the second high-side switch and the second low-side switch, detecting a first voltage resonance waveform across a switch of the buck-boost converter and turning on the switch of the buck-boost converter when the first voltage resonance waveform falls to zero.
Abstract:
A method comprises connecting a first resonant converter and a second resonant converter in parallel, detecting a first signal indicating a first soft switching process of the first resonant converter and a second signal indicating a second soft switching process of the second resonant converter and adjusting a first switching frequency of the first resonant converter by a first control circuit and a second switching frequency of the second resonant converter by a second control circuit until a load current flowing through the first resonant converter is substantially equal to a load current flowing through the second resonant converter.
Abstract:
A method comprises detecting a signal representing a drain-to-source voltage of a switch of a synchronous rectifier of an inductor-inductor-capacitor (LLC) resonant converter, comparing the signal with a predetermined threshold, generating a first logic state if the drain-to-source voltage is greater than the predetermined threshold, generating a second logic state if the drain-to-source voltage is less than the predetermined threshold and in response to the first logic state and the second logic state, adjusting a switching frequency of the LLC resonant converter such that the switching frequency moves back and forth across a boundary of body diode conduction, wherein a frequency difference between the switching frequency and a resonant frequency of the LLC resonant converter is less than or equal to one frequency adjustment step.
Abstract:
A converter comprises a non-isolated stage coupled to an input dc power source, wherein the non-isolated stage is configured to operate at a buck converter mode in response to a first input voltage and operate at a boost converter mode in response to a second input voltage, a resonant stage coupled between the non-isolated stage and a load, wherein the resonant stage is configured to operate at a resonant mode and a capacitor coupled between the non-isolated stage and the resonant stage.
Abstract:
A multilevel LLC resonant converter comprises a resonant tank connected in series with a primary side of a transformer, a first switch and a second switch connected in series, wherein a common node of the first switch and the second switch is coupled to a mid-voltage point through a first isolation switch and the resonant bank and a third switch and a fourth switch connected in series, wherein a common node of the third switch and the fourth switch is coupled to the resonant tank.
Abstract:
A method comprises providing a resonant converter, wherein the resonant converter comprises an input switch network coupled to a power source, wherein the input switch network comprises a plurality of power switches, a resonant tank coupled to the plurality of power switches, a transformer coupled to the resonant tank and an output stage coupled to the transformer, wherein the output stage comprises a synchronous rectifier formed by a first switch and a second switch, detecting a drain voltage of the first switch, comparing the drain voltage with a predetermined voltage threshold, wherein the drain voltage is coupled to a negative input of a comparator and the predetermined voltage threshold is coupled to a positive input of the comparator, generating a logic state based upon an output of the comparator and adjusting, by a control circuit, a switching frequency of the resonant converter based upon the logic state.