Abstract:
The melting of a fuse of a CMOS type integrated circuit is caused by using the existence of a stray thyristor created in the neighborhood of the boundaries of pads made in a substrate. This stray thyristor is triggered by artificially making the potential drop in an intermediate region of the pad. The thyristor always comes on suddenly, the current that flows through the thyristor is very high and the phenomenon stops spontaneously when the fuse is melted.
Abstract:
The disclosure relates to an electrically erasable and programmable memory comprising at least one word of memory cells with first and second control gate transistors in parallel to apply a control gate voltage to the memory cells of the word. The memory also comprises s first control circuit to supply a first control voltage to a control terminal of the first control gate transistor through a first current limiter, and a second control circuit to supply a second control voltage to a control terminal of the second control gate transistor through second current limiter.
Abstract:
A process is provided for fabricating a wafer including a plurality of chips separated by scribe lines. The method includes locking at least one chip on the wafer using a secret key, and writing the secret key into at least one memory present on the wafer.
Abstract:
A method of programming memory cells in a nonvolatile memory, includes applying a programming voltage to a first bitline and setting a second bitline in a floating state. The method further includes applying a compensation voltage to a shield conductive line coupled to the bitline set in the floating state, and setting in the floating state a shield conductive line coupled to the bitline receiving the programming voltage. The method is applicable to the reduction of the parasitic programming phenomena of memory cells by capacitive coupling between bitlines.
Abstract:
A method for electrically programming a non-volatile memory in which a programming cycle includes prior addressing of memory cells from an initial address corresponding to a first row and a column of a memory plane. The method may include addressing the memory cells in a second consecutive row when the end of the first row is reached to store data on bits with consecutive and increasing addresses in two consecutive rows.
Abstract:
The memory device comprises a physical memory plane (PMP) comprising m first physical lines (RGP1i) extending along a first direction and n second physical lines (RGP2j) extending along a second direction, reception means for receiving a logical address (ADR) designating a first logical line (RG1i) and a second logical line (RG2j) of a matrix logical memory plane (PML), possessing 2p first logical lines extending along the first direction and 2q second logical lines extending along the second direction, in that m and n are each different from a power of two, m being a multiple of 2k, k being less than or equal to p, and the product of m and n being equal to the nearest integer above 2p+q, and in that it comprises means for addressing the physical memory plane (PMP) that are configured to address a first physical line and a part only of a second physical line on the basis of the content of the said logical address received and of the remainder of a Euclidean division of a part of the content of this logical address received by m/2k.
Abstract:
The disclosure relates to a device for supplying to at least one integrated circuit a high voltage for erasing and/or programming of a memory. The device includes at least one contact terminal linked to at least one contact terminal of the integrated circuit, a monitor for monitoring a data signal received by the integrated circuit and detecting in the data signal a write command of the memory, and a voltage supplier for applying the high voltage to a terminal of the integrated circuit when a write command of the memory has been detected by the monitor.
Abstract:
A method of programming memory cells in a nonvolatile memory, includes applying a programming voltage to a first bitline and setting a second bitline in a floating state. The method further includes applying a compensation voltage to a shield conductive line coupled to the bitline set in the floating state, and setting in the floating state a shield conductive line coupled to the bitline receiving the programming voltage. The method is applicable to the reduction of the parasitic programming phenomena of memory cells by capacitive coupling between bitlines.
Abstract:
The disclosure relates to an electrically erasable and programmable memory, comprising memory cells arranged in bit lines and word lines transverse to bit lines, wherein each memory cell may be in a programmed or erased state, the memory comprising memory cell selection circuits configured to memorize and read data bits in two memory cells belonging to different bit lines and different word lines, and to avoid a memory cell from being written or read by mistake in another state than a default state after a gate oxide breakdown of a transistor of the memory, and a read circuit to determine a data bit to be read in the memory according to the states of the two memory cells memorizing the data bit.
Abstract:
A method and a system of multichannel transmission over a twin-wire bus including a data signal and a synchronization signal, data of a first channel being transmitted by a state coding of the data signal for a time period containing a first state of the synchronization signal, data of a second channel being transmitted by pulse coding outside of said period.