摘要:
A gettering unit encompasses a silicon substrate, a thin film heater disposed on the silicon substrate, and a gettering layer disposed selectively on the thin film heater. Here, the thin film heater is made of metallic film such as platinum (Pt) or chromium (Cr) film. The area of the gettering layer is smaller than the area for the thin film heater so as to expose first and second end terminals of the thin film heater. The first and second end terminals of the thin film heater serves as the bonding pads in the assembling process.
摘要:
This invention relates to a capacitor electrode which includes porous layers made of a fiber and/or a whisker containing crystal tungsten oxides. The tungsten oxide fiber and/or whisker contain W18O49 as a main ingredient. The tungsten oxide fiber and/or whisker are made on a substrate. When manufacturing the capacitor electrode the substrate or its precursor is heated in vacuo or in an inactive containing a minute amount of oxygen, thereby completing the fiber and/or whisker.
摘要:
This invention relates to a capacitor electrode which includes porous layers made of a fiber and/or a whisker containing crystal tungsten oxides. The tungsten oxide fiber and/or whisker contain W18O49 as a main ingredient. The tungsten oxide fiber and/or whisker are made on a substrate. When manufacturing the capacitor electrode the substrate or its precursor is heated in vacuo or in an inactive containing a minute amount of oxygen, thereby completing the fiber and/or whisker.
摘要:
An etching device performing an etching process on a material immersed in a etchant which is a mixture of acids of which the main components are fluoric acid, nitric acid, and acetic acid. The etching device includes a semiconductor electrode immersed in the etchant, an opposing electrode immersed in the etchant, an electron meter for detecting an electric potential difference between the semiconductor electrode and the opposing electrode, and a controller for uniformly controlling the nitrite ion concentration in the etchant from the electric potential difference between the semiconductor electrode and the opposing electrode, detected by the electronmeter.
摘要:
A whisker-grown body of the present invention includes a raw material substrate made of manganese-containing metal and/or ceramics, and a whisker containing 50% by mass or more of manganese dioxide and formed on a surface of the raw material substrate. The whisker-grown body has a high surface ratio to unit volume and improves electrode efficiency when used as an electrode of an electrochemical capacitor.
摘要:
An etching process for a silicon semiconductor substrate to produce a semiconductor pressure sensor or a semiconductor acceleration sensor. The etching process comprises the following steps: (a) carrying out an etching of the semiconductor without application of a voltage to the semiconductor so as to accomplish a pre-etching step, the pre-etching step including dipping the semiconductor in hydrazine hydrate; and (b) carrying out an electrochemical etching of the semiconductor by applying pre-etching step so as to accomplish a final etching step, the final etching step including dipping the semiconductor in an alkali system etching solution containing at least hydrazine (N.sub.2 H.sub.4), potassium hydroxide (KOH), and water (H.sub.2 O), the alkali system etching solution containing potassium hydroxide in an amount of not less than 0.3% by weight.
摘要翻译:一种硅半导体衬底的蚀刻工艺,用于制造半导体压力传感器或半导体加速度传感器。 蚀刻工艺包括以下步骤:(a)对半导体进行不施加电压的蚀刻,以实现预蚀刻步骤,所述预蚀刻步骤包括将半导体浸入水合肼中; 并且(b)通过施加预蚀刻步骤进行半导体的电化学蚀刻,以便完成最终的蚀刻步骤,最后的蚀刻步骤包括将半导体浸入至少含有肼(N 2 H 4),钾 氢氧化物(KOH)和水(H 2 O),含有不小于0.3重量%的氢氧化钾的碱系蚀刻溶液。
摘要:
An electrochemical etching process carried out in an etching system including an electrolysis vessel which is provided thereinside with facing wall surfaces defining therebetween an etching solution flow region. A semiconductor substrate to be etched and a counter electrode are mounted respectively on the facing wall surfaces. A flow stream generating section for the etching solution is formed separate from the etching solution flow region and includes a device for generating the flow stream of the etching solution. The flow stream generating section is connected to the etching solution flow region in such a manner that the etching solution flow in a direction generally parallel with the facing wall surfaces inside the electrolysis vessel. An electric potential is applied between the semiconductor substrate and the counter electrode to accomplish an electrochemical etching on the semiconductor substrate.
摘要:
A semiconductor device is produced through electrolytic etching process. The device comprises a P-type silicon substrate. An N-type epitaxial layer is formed on the silicon substrate. P-type regions are defined in the N-type epitaxial layer. N-type regions are defined in some of the P-type regions. A first wiring layer connects to predetermined ones of the P-type regions. A second wiring layer connects to predetermined ones of the N-type regions. The semiconductor device has a given part which has such a possibility that a predetermined magnitude of leakage current flows therethrough between the first and second wiring layers when subjected to the electrolytic etching process. The semiconductor device further has a circuit which is electrically connected to one of the first and second wiring layers. The circuit is capable of removing the possibility of the leakage current flow through the given part when opened.
摘要:
A semiconductor wafer including a plurality of chips having respective portions to be etched electrochemically with application of an electric voltage to the semiconductor wafer immersed in an etching solution. The semiconductor wafer includes electric circuits formed therein for controlling electric energy applied to the respective portions.
摘要:
An electrochemical etching method for producing semiconductor diaphragms from a semiconductor wafer comprised of a first semiconductor layer of a first conductivity type and a second semiconductor layer formed on the first semiconductor layer, the second semiconductor layer having a second conductivity type different than the first semiconductor layer. The semiconductor wafer is placed in an etching solution with respect to a counter-electrode immersed in the etching solution. The semiconductor wafer has a plurality of chips each of which includes at least one third semiconductor layer of the first conductivity type. The third semiconductor layer extends through the second semiconductor layer to the first semiconductor layer. A first positive potential is applied to the first and third semiconductor layers with respect to the counter-electrode. A second positive potential is applied to the second semiconductor layer with respect to the first semiconductor layer.