Abstract:
Embodiments are provided for guard band utilization for synchronous and asynchronous communications in wireless networks. A user equipment (UE) or a network component transmits symbols on data bands assigned for primary communications. The data bands are separated by a guard band having smaller bandwidth than the data bands. The UE or network component further modulates symbols for secondary communications with a spectrally contained wave form, which has a smaller bandwidth than the guard band. The spectrally contained wave form is achieved with orthogonal frequency-division multiplexing (OFDM) modulation or with joint OFDM and Offset Quadrature Amplitude Modulation (OQAM) modulation. The modulated symbols for the secondary communications are transmitted within the guard band.
Abstract:
Various disclosed embodiments include methods and systems for communication in a wireless communication system. A method comprises receiving a signal corresponding to a plurality of modulated signals, each of the plurality of modulated signals corresponding to a unique electronic device. The method comprises filtering the received signal with a plurality of filters, each of which is matched to a corresponding filter in a respective electronic device to obtain a filtered signal for the respective electronic device. The method comprises performing a fast Fourier transform (FFT) operation on the filtered signal to obtain demodulated data corresponding to the respective electronic device.
Abstract:
Methods and devices for common channel low PAPR signaling are disclosed having a power amplifier set configured to transmit broad-beam signals over a frequency band narrower than the available bandwidth and modulated with a low PAPR sequence. A second power amplifier set may be configured to transmit narrow-beam unicast signals.
Abstract:
A unified frame structure for filter bank multi-carrier (FBMC) and orthogonal frequency division multiplexed (OFDM) waveforms may allow FBMC and OFDM frames to be communicated over a common channel without significant inter-frame gaps. The unified frame structure may set an FBMC frame duration to an integer multiple of an OFDM frame element duration to enable alignment of FBMC frames and OFDM frames in the time domain. The unified frame structure may also map control channels in the FBMC and OFDM frames to common resource locations so that the respective control channels are aligned in the time and/or frequency domains. The unified frame structure may also share synchronization channels between FBMC and OFDM frames. Additionally, overhead in an FBMC time division duplexed (TDD) communications channel can be reduced by overlapping time windows appended to FBMC blocks.
Abstract:
Embodiments are provided for guard band utilization for synchronous and asynchronous communications in wireless networks. A user equipment (UE) or a network component transmits symbols on data bands assigned for primary communications. The data bands are separated by a guard band having smaller bandwidth than the data bands. The UE or network component further modulates symbols for secondary communications with a spectrally contained wave form, which has a smaller bandwidth than the guard band. The spectrally contained wave form is achieved with orthogonal frequency-division multiplexing (OFDM) modulation or with joint OFDM and Offset Quadrature Amplitude Modulation (OQAM) modulation. The modulated symbols for the secondary communications are transmitted within the guard band.
Abstract:
System and method embodiments are provided for channel sounding in a frequency division duplex (FDD) system. The embodiments enable a transmission point (TP) to determine channel information about a downlink channel from an uplink channel sounding signal received on the downlink channel frequency band during a time window reserved for uplink channel sounding on the downlink channel frequency band. In an embodiment, a method in a controller includes determining with the controller a schedule for an uplink sounding window in a downlink frequency band, wherein the uplink sounding window comprises a transmission window in at least a partial downlink frequency band that is reserved for uplink channel sounding, instructing a TP to signal the schedule to at least one wireless device in a coverage area of the TP, receiving a channel sounding signal in the downlink frequency band, and obtaining downlink channel state information from the channel sounding signal.
Abstract:
A method for operating a device includes determining adaptation criteria for a waveform to be transmitted by a transmitting device over a communications channel towards a receiving device, and adjusting a generalized multi-carrier multiplexing parameter (GMMP) of the waveform in accordance with the adaptation criteria. The method also includes transmitting an indicator of the adjusted GMMP to at least one of the transmitting device and the receiving device.
Abstract:
Methods and apparatuses are provided to select coefficients for modeling a system. Data collected from the system is used to generate a data matrix. An upper triangular matrix can be generated in accordance with the data matrix, and the upper triangular matrix can be pruned to remove selected rows and columns from the upper triangular matrix, thereby generating a pruned data matrix. A coefficient vector can be generated in accordance with the pruned data matrix. Various alternative methods of selecting coefficients for modeling the system, as well as apparatus, devices, and systems for performing said methods, are also provided.