Abstract:
A subblock-based coding of transform coefficient blocks of the enhancement layer is rendered more efficient. To this end, the subblock subdivision of the respective transform coefficient block is controlled on the basis of the base layer residual signal or the base layer signal. In particular, by exploiting the respective base layer hint, the subblocks may be made longer along a spatial frequency axis transverse to edge extensions observable from the base layer residual signal or the base layer signal.
Abstract:
A subblock-based coding of transform coefficient blocks of the enhancement layer is rendered more efficient. To this end, the subblock subdivision of the respective transform coefficient block is controlled on the basis of the base layer residual signal or the base layer signal. In particular, by exploiting the respective base layer hint, the subblocks may be made longer along a spatial frequency axis transverse to edge extensions observable from the base layer residual signal or the base layer signal.
Abstract:
The coding efficiency of scalable video coding is increased by substituting missing spatial intra prediction parameter candidates in a spatial neighborhood of a current block of the enhancement layer by use of intra prediction parameters of a co-located block of the base layer signal. By this measure, the coding efficiency for coding the spatial intra prediction parameters is increased due to the improved prediction quality of the set of intra prediction parameters of the enhancement layer, or, more precisely stated, the increased likelihood, that appropriate predictors for the intra prediction parameters for an intra predicted block of the enhancement layer are available thereby increasing the likelihood that the signaling of the intra prediction parameter of the respective enhancement layer block may be performed, on average, with less bits.
Abstract:
A decoder includes an entropy decoder configured to derive a number of bins of the binarizations from the data stream using binary entropy decoding by selecting a context among different contexts and updating probability states associated with the different contexts, dependent on previously decoded portions of the data stream; a desymbolizer configured to debinarize the binarizations of the syntax elements to obtain integer values of the syntax elements; a reconstructor configured to reconstruct the video based on the integer values of the syntax elements using a quantization parameter, wherein the entropy decoder is configured to distinguish between 126 probability states and to initialize the probability states associated with the different contexts according to a linear equation of the quantization parameter, wherein the entropy decoder is configured to, for each of the different contexts, derive a slope and an offset of the linear equation from first and second four bit parts of a respective 8 bit initialization value.
Abstract:
A decoder includes an entropy decoder configured to derive a number of bins of the binarizations from the data stream using binary entropy decoding by selecting a context among different contexts and updating probability states associated with the different contexts, dependent on previously decoded portions of the data stream; a desymbolizer configured to debinarize the binarizations of the syntax elements to obtain integer values of the syntax elements; a reconstructor configured to reconstruct the video based on the integer values of the syntax elements using a quantization parameter, wherein the entropy decoder is configured to distinguish between 126 probability states and to initialize the probability states associated with the different contexts according to a linear equation of the quantization parameter, wherein the entropy decoder is configured to, for each of the different contexts, derive a slope and an offset of the linear equation from first and second four bit parts of a respective 8 bit initialization value.
Abstract:
An entropy decoder is configured to, for horizontal and vertical components of motion vector differences, derive a truncated unary code from the data stream using context-adaptive binary entropy decoding with exactly one context per bin position of the truncated unary code, which is common for horizontal and vertical components of the motion vector differences, and an Exp-Golomb code using a constant equi-probability bypass mode to obtain the binarizations of the motion vector differences. A desymbolizer is configured to debinarize the binarizations of the motion vector difference syntax elements to obtain integer values of the horizontal and vertical components of the motion vector differences. A reconstructor is configured to reconstruct a video based on the integer values of the horizontal and vertical components of the motion vector differences.
Abstract:
A subblock-based coding of transform coefficient blocks of the enhancement layer is rendered more efficient. To this end, the subblock subdivision of the respective transform coefficient block is controlled on the basis of the base layer residual signal or the base layer signal. In particular, by exploiting the respective base layer hint, the subblocks may be made longer along a spatial frequency axis transverse to edge extensions observable from the base layer residual signal or the base layer signal.
Abstract:
A decoder includes an entropy decoder configured to derive a number of bins of the binarizations from the data stream using binary entropy decoding by selecting a context among different contexts and updating probability states associated with the different contexts, dependent on previously decoded portions of the data stream; a desymbolizer configured to debinarize the binarizations of the syntax elements to obtain integer values of the syntax elements; a reconstructor configured to reconstruct the video based on the integer values of the syntax elements using a quantization parameter, wherein the entropy decoder is configured to distinguish between 126 probability states and to initialize the probability states associated with the different contexts according to a linear equation of the quantization parameter, wherein the entropy decoder is configured to, for each of the different contexts, derive a slope and an offset of the linear equation from first and second four bit parts of a respective 8 bit initialization value.
Abstract:
An entropy decoder is configured to, for horizontal and vertical components of motion vector differences, derive a truncated unary code from the data stream using context-adaptive binary entropy decoding with exactly one context per bin position of the truncated unary code, which is common for horizontal and vertical components of the motion vector differences, and an Exp-Golomb code using a constant equi-probability bypass mode to obtain the binarizations of the motion vector differences. A desymbolizer is configured to debinarize the binarizations of the motion vector difference syntax elements to obtain integer values of the horizontal and vertical components of the motion vector differences. A reconstructor is configured to reconstruct a video based on the integer values of the horizontal and vertical components of the motion vector differences.
Abstract:
A decoder includes an entropy decoder configured to derive a number of bins of the binarizations from the data stream using binary entropy decoding by selecting a context among different contexts and updating probability states associated with the different contexts, dependent on previously decoded portions of the data stream; a desymbolizer configured to debinarize the binarizations of the syntax elements to obtain integer values of the syntax elements; a reconstructor configured to reconstruct the video based on the integer values of the syntax elements using a quantization parameter, wherein the entropy decoder is configured to distinguish between 126 probability states and to initialize the probability states associated with the different contexts according to a linear equation of the quantization parameter, wherein the entropy decoder is configured to, for each of the different contexts, derive a slope and an offset of the linear equation from first and second four bit parts of a respective 8 bit initialization value.