Abstract:
A method and device for connecting and repairing a shear web includes the method steps of dry-fitting a shear web insert in a rotor blade assembly to establish a perimeter gap at an angled perimeter interface between the shear web insert and the rotor blade assembly, the angled perimeter interface positioned between the shear web insert and at least one adjacent surface of a first shear web, a second shear web, a first side of the rotor blade assembly, and a second side of the rotor blade assembly, and then injecting a bonding paste into the perimeter gap. The rotor blade assembly can include a connecting device having at least one pre-fabricated clip.
Abstract:
Apparatus, systems, and methods are provided for determining remaining lifetime of a battery, such as a battery used to power a pitch drive system in a wind turbine. In one example implementation, a method can include controlling a discharge of the battery through a load. The method can include obtaining data indicative of a discharge voltage and a discharge current of the battery during discharge through the load. The method can include obtaining data indicative of a temperature associated with the battery during discharge through the load. The method can include determining data indicative of remaining lifetime of the battery as a function of the discharge voltage, discharge current, and the temperature. The method can include performing at least one control action based at least in part on the data indicative of remaining lifetime of the battery.
Abstract:
A wind turbine tower includes a door access opening in a down tower area of the tower. A hinged door panel covers the door access opening, with a ventilation opening defined through the door panel. A multi-sided intake structure, such as a box-like structure, is connected to an exterior of the door panel over the first ventilation opening. The intake structure extends transversely from the door panel and includes a top side, a bottom side, and at least two vertical sides extending between the top side and the bottom side. The vertical sides are open to air flow therethrough. The top and bottom sides may also be open to air flow therethrough. Air from multiple directions is drawn into an interior of the wind turbine tower through the intake structure and ventilation opening. A filtering system with first and second stage filters may be incorporated with any of the intake structures.
Abstract:
A method for installing a shear web insert between a blade segment and a blade insert of a rotor blade assembly is disclosed. The blade segment may include a first shear web and the blade insert may include a second shear web. The method may generally include coupling a first positioning device along an inner surface of a first side of the rotor blade assembly, inserting the shear web insert horizontally between the first and second shear webs until a first side face of the shear web insert engages the first positioning device and coupling a first retention device along the inner surface of the first side of the rotor blade assembly so that the first retention device is positioned adjacent to a second side face of the shear web insert, wherein the second side face is opposite the first side face.
Abstract:
A blade insert for coupling a first blade segment to a second blade segment is disclosed. The blade insert may generally include an aerodynamic body extending between a forward end configured to be coupled to the first blade segment and an aft end configured to be coupled to the second blade segment. The aerodynamic body may include a top side extending between a forward edge and an aft edge. The top side may define a top scarfed section at its forward edge. The aerodynamic body may further include a bottom side extending between a forward edge and an aft edge. The bottom side may define a bottom scarfed section at its forward edge. Additionally, at least a portion of the forward edge of the top side may be configured to be offset relative to the forward edge of the bottom side.
Abstract:
In one aspect, a rotor blade for a wind turbine may include a body extending between a root end and a tip end. The body may include a root portion extending from the root end. The root portion may include an inner surface defining an inner circumference. In addition, the rotor blade may include a root stiffener assembly disposed within the root portion of the body. The root stiffener assembly may include a plurality of stiffening ribs coupled to the root portion so as to extend along the inner surface. The stiffening ribs may be spaced apart from one another circumferentially around the inner circumference of the root portion
Abstract:
In one aspect, a rotor blade for a wind turbine includes a body extending between a root end and a tip end. The body may include a root portion extending from the root end. The root portion may include an inner surface defining an inner circumference. In addition, the rotor blade may include a root stiffener disposed at least partially within the root portion of the body. The root stiffener may include a plurality of arms extending radially from the inner surface and may be configured to extend circumferentially around only a portion of the inner circumference of the root portion.
Abstract:
A method for installing an add-on device onto a blade of a wind turbine includes configuring a plurality of tag lines to a wrap, the tag lines having a length to extend to a ground location when the add-on device is positioned on the blade. With the rotor, positioning the blade to a first rotated position. The add-on device is located at a desired span-wise location on the blade such that the wrap forms an open-sleeve configuration draped around the leading edge of the blade and span-wise sides of the wrap extend along pressure and suction sides of the blade adjacent a trailing edge of the blade. With the tag lines, the wrap is tensioned against the blade. Attachment devices configured with the wrap are affixed to the trailing edge of the blade.
Abstract:
A method is provided for installing a continuous pliant add-on device (e.g., a vibration suppression device) onto a blade of a wind turbine, wherein the blade is mounted to a rotor that is atop a tower. The method includes, with the rotor, positioning the blade to a first position. A first end of the add-on device is fixed to a first end of the blade. The blade is then rotated with a pitch control system while supplying the add-on device in a first direction along a span of the rotating blade to wrap the add-on device around the blade towards an opposite second end of the blade in a first wrap pattern.
Abstract:
A system and method are provided for reducing vibrations and loads in one or more rotor blades of a wind turbine when the rotor hub is locked against rotation, The method detects that the rotor blades are vibrating above a threshold limit, and determines one or more wind parameters for wind impacting the rotor blades. An initial orientation of the blades is also determined. Based on the wind parameters and initial blade orientation, a first angle of attack for the rotor blades is determined that will reduce the vibrations in the rotor blades. The method then determines if expected loads induced at one or more wind turbine components will exceed a threshold limit at the first angle of attack for the rotor blades. The first angle of attack is modified when the expected loads exceed the threshold limit to reduce the expected loads to below the threshold limit. A controller pitches the rotor blades to achieve the first angle of attack.