Abstract:
A method of diagnosing a knock sensor includes steps of receiving data from the knock sensor, the knock sensor configured to be coupled to an engine, processing the data to derive one or more events from the data, and determining whether the one or more events took place at a known time or a known crank position.
Abstract:
The subject matter disclosed herein relates to a system and method for monitoring and controlling a combustion engine. In one embodiment, a system includes a controller configured to control operations of a combustion engine, to receive a signal from at least one knock sensor coupled to the combustion engine, to determine a knock margin value from the signal, and to estimate a fuel quality value of a fuel injected into the combustion engine based at least on a comparison between the knock margin value and a laboratory performance data set.
Abstract:
A system includes a controller configured to receive a signal acquired by the at least one knock sensor coupled to a reciprocating device, to sample the received signal, to analyze the sampled signal, and to utilize standard quality control (SQC) techniques to perform real-time diagnostics on the reciprocating device based on the analyzed signal.
Abstract:
A method of monitoring an operating event of a combustion engine includes receiving a noise signal sensed by a knock sensor disposed in or proximate to the combustion engine, correlating the noise signal with a fingerprint having at least an ADSR envelope indicative of the operating event, and detecting if the operating event has occurred based on the correlating of the noise signal with the fingerprint.
Abstract:
A system includes at least one sensor for sensing at least one of vibration, pressure, acceleration, deflection, or movement within a reciprocating engine and a controller. The controller is configured to receive a raw signal from the at least one sensor, derive a filtered knock signal using predictive frequency bands by applying a filter, derive an absolute filtered knock signal from the filtered signal, identify a maximum of the absolute filtered knock signal for each engine cycle, predict a peak pressure value of each of one or more engine cycles using the identified maximums of the absolute filtered signal and a predictive model, and adjust operation of the reciprocating engine based on the predicted peak pressure values.
Abstract:
A system includes a controller configured to receive a signal acquired by the at least one knock sensor coupled to a reciprocating device, to sample the received signal, to analyze the sampled signal, and to utilize standard quality control (SQC) techniques to perform real-time diagnostics on the reciprocating device based on the analyzed signal.
Abstract:
Embodiments of the disclosure provide variable valve timing (VVT) mechanisms. A VVT mechanism according to the disclosure can include: a lever having a first end, a second end, and a fulcrum positioned therebetween; a length-adjustable push rod coupled to the first end of the lever and including an actuator therein; a rod valve coupled to the second end of the lever, the rod valve being configured to open and close an intake valve of an engine system based on a movement of the lever; and an engine control unit (ECU) operatively connected to the actuator of the length-adjustable push rod, wherein the ECU adjusts a length of the length-adjustable push rod based on an operating condition of the engine system. In addition or alternatively, the ECU can control an amount of cushioning fluid for the valves to affect the rate at which the intake valve opens or closes.
Abstract:
In one embodiment, one or more tangible, non-transitory computer-readable media stores instructions. The instructions, when executed by one or more processors, are configured to receive engine rotation timing event signals for one or more components of the engine and vibration signals indicative of movement of the one or more components, to synchronize the engine rotation timing event signals and the vibration signals to generate synchronized vibration signals, to determine whether a fault exists by comparing the synchronized vibration signals to vibration signatures, and to generate a graphical user interface (GUI) that depicts the synchronized vibration signals at angular positions of the one or more components in relation to time as the one or more components rotate during operation of the engine.
Abstract:
A method of analyzing a noise signal includes receiving, via a local engine control unit (ECU), a noise signal sensed by a knock sensor disposed in a reciprocating device. The method further includes processing the noise signal via at least one of the local ECU, a remote ECU, or an external system. The processing includes preconditioning the noise signal to derive a preconditioned noise signal, and applying an ADSR envelope to the preconditioned noise signal. The processing additionally includes extracting tonal information from the preconditioned noise signal and creating a fingerprint of the noise signal based on the ADSR envelope, the tonal information, or a combination thereof.
Abstract:
A method of distinguishing piston slap from engine knock in a reciprocating device includes obtaining a fundamental frequency of a cylinder, the cylinder having a thrust face and an anti-thrust face, receiving a first signal from a first knock sensor mounted on the cylinder, and identifying piston slap by evaluating whether a first plurality of amplitudes of the first signal at the fundamental frequency and one or more harmonic frequencies of the fundamental frequency exceed a piston slap threshold value.