Abstract:
An additive manufacturing system is configured to manufacture a component. The additive manufacturing system includes a build platform, a recoater, a monitoring camera, and a controller. The component is disposed on the build platform. The recoater includes a recoater blade configured to spread a powdered build material across the build platform and the component forming a powder bed. The monitoring camera is positioned to image the recoater blade. The monitoring camera is configured to acquire a plurality of images of the recoater blade. The controller is configured to receive the plurality of images from the monitoring camera. The controller is configured to detect defects in the powder bed based on the plurality of images received from the monitoring camera.
Abstract:
A method of creating an article of manufacture is provided, which includes directing multiple laser beams to a single galvanometer; and dynamically repositioning the multiple laser beams in counterpart paths using the single galvanometer to shine the multiple laser beams on and melt a first powder material and, upon solidification of the melted first powder material, forming a first series of duplicate three dimensional structures, where each of the multiple laser beams is used to form at least one of the first series of duplicate three dimensional structures.
Abstract:
Disclosed is a low-cost, portable photo thermal spectroscopy (PTS) reader for use in detecting the presence of diseases in the bodily fluid of affected patients. The PTS reader is designed to be durable, easy to use and provide readings from the Lateral Flow Assay (LFA) with rapid results. Also provided are methods of use.
Abstract:
A method of monitoring a surface temperature of a hot gas path component includes directing an excitation beam having an excitation wavelength at a layer of a sensor material composition deposited on a hot gas path component to induce a fluorescent radiation. The method includes measuring fluorescent radiation emitted by the sensor material composition. The fluorescent radiation includes at least a first intensity at a first wavelength and a second intensity at a second wavelength. The surface temperature of the hot gas path component is determined based on a ratio of the first intensity at the first wavelength and the second intensity at the second wavelength of the fluorescent radiation emitted by the sensor material composition.
Abstract:
A method for classifying a tissue sample of a biopsy specimen includes receiving a signal from at least one location of the tissue sample including a plurality of chromophores. Further, the method includes verifying whether the received signal comprises a predetermined amount of at least one of an attenuated illumination light and a re-emitted light. Also, the method includes determining that a spectrum of the received signal is within a predetermined range. In addition, the method includes processing the spectrum of the received signal to decompose the signal into a plurality of components. Furthermore, the method includes classifying tissue in the at least one location of the tissue sample into one of a plurality of tissue types based on the plurality of components.
Abstract:
An additive manufacturing (AM) apparatus is provided, having a build unit including a powder delivery mechanism, a powder recoating mechanism, and an irradiation beam directing mechanism. The AM apparatus further includes a rotatable build platform having an inner diameter and an outer diameter. A fluid flow mechanism includes an inlet body forming an inlet plenum and a collector body extended from the inlet body. The collector body forms a collector plenum in fluid communication with the inlet plenum. The collector body forms an outlet opening, wherein the outlet opening is positioned proximate to the inner diameter of the rotatable build platform. The outlet opening is configured to provide a flow of fluid toward the outer diameter above the rotatable build platform.
Abstract:
An additive manufacturing system includes a laser array including a plurality of laser devices. Each laser device of the plurality of laser devices generates an energy beam for forming a melt pool in a powder bed. The additive manufacturing system further includes at least one optical element. The optical element receives at least one of the energy beams and induces a predetermined power diffusion in the at least one energy beam.
Abstract:
Additive manufacturing methods and systems are disclosed including irradiation devices for an additive manufacturing machine for additively manufacturing three-dimensional objects. The irradiation device includes a beam generation device configured to provide an energy beam travelling on a nominal beam path trajectory and an optical modulator comprising a reflective optic downstream from the beam generating device, wherein the optical modulator is configured to actuate the reflective optic to modify a position of the energy beam from the nominal beam path trajectory. The irradiation device further includes an optical scanner disposed downstream from the optical modulator, wherein the optical scanner is configured to translate the nominal beam path trajectory along a build plane of the additive manufacturing machine.
Abstract:
A component is fabricated in a powder bed by moving a laser array across the powder bed. The laser array includes a plurality of laser devices. The power output of each laser device of the plurality of laser devices is independently controlled. The laser array emits a plurality of energy beams from a plurality of selected laser devices of the plurality of laser devices to generate a melt pool in the powder bed. A non-uniform energy intensity profile is generated by the plurality of selected laser devices. The non-uniform energy intensity profile facilitates generating a melt pool that has a predetermined characteristic.
Abstract:
A biopsy collecting device includes a needle unit comprising a biopsy specimen. Also, the biopsy collecting device includes an activator unit operatively coupled to the needle unit and including a channel at a bottom surface of the activator unit, wherein the channel is configured to detachably couple the biopsy collecting device to an attaching unit of a spectroscopy system.