Abstract:
An accelerometer includes a membrane, an energy source producing a laser beam which is directed at the membrane causing it to vibrate, and a transparent cap disposed at one end of the energy source. The accelerometer includes a first controller for adjusting an output power of the energy source in a first feedback loop, a second controller for controlling the wavelength of the laser beam in a second feedback loop, and a detector sensing a reflected portion of the laser beam. An acceleration signal is based in part on the frequency of the reflected portion of the laser beam.
Abstract:
A method for the detection of a gas flowing from a location in a structure is described. A hollow-core optical fiber is placed in a position adjacent the structure. The fiber includes a sound-conductive cladding layer; and further includes at least one aperture extending into its cross-sectional diameter. A beam of pulsed, optical is transmitted into the fiber with a tunable laser. The optical energy is characterized by a wavelength that can be absorbed by the gas that flows into the fiber through the aperture. This causes a temperature fluctuation in the region of gas absorption, which in turn generates an acoustic wave in the absorption region. The acoustic wave travels through the cladding layer, and can be detected with a microphone, so as to provide the location of gas flow, based on the recorded position and movement of the acoustic wave. A related system is also described.
Abstract:
Optical-based apparatus and method for sensing parameters in connection with an asset, such as a pipeline, are provided. At least two sites in an optical fiber may include a respective fiber grating arranged to have a respective optical response in a wavelength spectrum having a distinguishing feature indicative of a value of a respective local parameter at a respective grating site. The two fiber gratings may be further arranged to form, in combination with a respective portion of the optical fiber which extends between the two sites, respective optical backscatter portions that when combined with one another are effective to sense an optical change in the fiber portion between the sites indicative of a value of a distributed parameter. This is a parameter modality different from a parameter modality of the respective local parameters at the respective grating sites.
Abstract:
A wavelength assignment system in one embodiment includes an upstream port, a sensor port, and a downstream port. The upstream port is configured to receive a transmitted signal including a drive component and a read component comprising individual read channel components at corresponding individual read wavelengths. The sensor port is configured to provide a sensor component of the transmitted signal including a sensor portion of the drive component and substantially all of an individual read channel component to a sensor. The downstream port is configured to provide a downstream component including a downstream portion of the drive component and at least one additional read channel component of the transmitted signal to at least one additional sensor disposed downstream of the sensor. The wavelength assignment system is configured to receive the transmitted signal and separate the transmitted signal into the sensor component and the downstream component.
Abstract:
A system for optically monitoring a gas turbine engine includes an optical multiplexer configured to receive multiple images from respective viewports into the gas turbine engine. The optical multiplexer includes a movable reflective device configured to selectively direct at least a portion of each image toward a detector array, and the detector array is directed toward a fixed location on the optical multiplexer.
Abstract:
A system for optically monitoring a gas turbine engine includes a viewport having an opening disposed within a casing of the gas turbine engine. The opening extends from an interior side of the casing to an exterior side of the casing, and the viewport is configured to receive an image from inside the casing. The system also includes an optical connection positioned outside the casing and optically coupled to the viewport. The optical connection is configured to convey the image from the viewport to a detector array, and the optical connection includes multiple optical fibers fused to one another to form a unitary substantially rigid fiber bundle.
Abstract:
A photonic integrated circuit includes a waveguide that receive photons from an optical fiber and directs the photons in a loop formed by the waveguide. The circuit also includes one or more of a variable optical attenuator and configured to adjust a number of the photons between a key level and one or more decoy levels, an intensity modulator coupled with the waveguide and configured to adjust a number of the photons between a key level and a decoy level, and a phase shifter coupled with the waveguide and configured to change a phase of the photons. The waveguide is configured to direct one or more of the photons back out of the optical fiber after the one or more of the photons has passed through the loop formed by the waveguide with a polarization state of the one or more of the photons rotated by 90°.
Abstract:
A distributed gas detection system includes one or more hollow core fibers disposed in different locations, one or more solid core fibers optically coupled with the one or more hollow core fibers and configured to receive light of one or more wavelengths from a light source, and an interrogator device configured to receive at least some of the light propagating through the one or more solid core fibers and the one or more hollow core fibers. The interrogator device is configured to identify a location of a presence of a gas-of-interest by examining absorption of at least one of the wavelengths of the light at least one of the hollow core fibers.
Abstract:
Microstructured optical fiber (MOF) includes a cladding extending a length between first and second ends. The cladding includes an inner porous microstructure that at least partially surrounds a hollow core. A perimeter contour of the hollow core has a non-uniform radial distance from a center axis of the cladding such that first segments of the cladding along the perimeter contour have a shorter radial distance from the center axis relative to second segments of the cladding along the perimeter contour. The cladding receives and propagates light energy through the hollow core, and the inner porous microstructure substantially confines the light energy within the hollow core. The cladding defines at least one port hole that extends radially from an exterior surface of the cladding to the hollow core. Each port hole penetrates the perimeter contour of the hollow core through one of the second segments of the cladding.
Abstract:
A method for the detection of a gas flowing from a location in a structure is described. A hollow-core optical fiber is placed in a position adjacent the structure. The fiber includes a sound-conductive cladding layer; and further includes at least one aperture extending into its cross-sectional diameter. A beam of pulsed, optical is transmitted into the fiber with a tunable laser. The optical energy is characterized by a wavelength that can be absorbed by the gas that flows into the fiber through the aperture. This causes a temperature fluctuation in the region of gas absorption, which in turn generates an acoustic wave in the absorption region. The acoustic wave travels through the cladding layer, and can be detected with a microphone, so as to provide the location of gas flow, based on the recorded position and movement of the acoustic wave. A related system is also described.