Abstract:
A utility pole deterioration detection system includes a cable (20) disposed in a utility pole (10), the cable (20) containing a communication optical fiber, a receiving unit (331) configured to receive an optical signal containing a pattern that changes according to a deterioration state of the utility pole (10) from at least one optical fiber contained in the cable (20), and a detection unit (332) configured to detect a deterioration state of the utility pole (10) based on the pattern.
Abstract:
A utility pole deterioration detection system includes a cable (20) disposed in a utility pole (10), the cable (20) containing a communication optical fiber, a receiving unit (331) configured to receive an optical signal containing a pattern that changes according to a deterioration state of the utility pole (10) from at least one optical fiber contained in the cable (20), and a detection unit (332) configured to detect a deterioration state of the utility pole (10) based on the pattern.
Abstract:
A solution is provided comprising boron nitride nanotubes (BNNTs) in a liquid solvent. An optical waveguide, such as an optical fiber, is contacted with the solution so as to form a layer of the solution supported on at least a portion of the optical waveguide. The liquid solvent is then removed from the layer of the solution supported on the optical waveguide in order to form a coating of the BNNTs on the optical waveguide. Further provided is a BNNT coated optical waveguide for use as a sensor.
Abstract:
A system for determining a process variable of a medium arranged in a container is disclosed, including an optical fiber Bragg sensor with an optical waveguide with a fiber Bragg grating, a signal generating unit designed to generate an optical input signal and couple it into the waveguide, a receiving unit designed to receive an optical output signal from the waveguide and converts it into an electrical output signal, and an evaluating unit which determines the process variable using the electrical output signal, wherein a subsection of the optical waveguide is arranged inside or in a wall of the container, the subsection designed such that the fiber Bragg grating is affected by the process variable to be determined of the medium.
Abstract:
Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, or combinations thereof. In an exemplary embodiment, light guides can be coupled with the sensing components described herein to provide sensor devices capable of increased NIR detection sensitivity in determining the presence of detectable species, such as gases and volatile organic compounds. In another exemplary embodiment, optical properties of the plasmonic nanomaterials combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the particle or as a result of charge transfer to and from the plasmonic material as a result of interactions with the plasmonic material and/or the MOF material.
Abstract:
There are provided an SPR sensor cell and sensor, both having very excellent detection sensitivity. The SPR sensor cell includes: an under-cladding layer; a core layer, at least a part of the core layer being adjacent to the under-cladding layer; and a metal layer covering the core layer. The core layer includes a uniform layer and a gradient layer arranged between the uniform layer and the under-cladding layer; a refractive index NCO of the uniform layer satisfies a relationship of 1.34≦NCO
Abstract:
A fluid detector includes a coupler. The coupler includes a hollow tube, an optical fiber, and a jacket. A fluid delivery device includes a fluid output end and a fluid recovery end. The fluid output end is connected to a first input end of the hollow tube. The fluid recovery end is connected to a first output end of the hollow tube. An optical signal generator inputs an optical signal to a second input end of the optical fiber. A detection module includes an optical sensor, a database, and a processor. The optical sensor detects the optical signal outputted by the second output end and generates a sensing datum. The processor is electrically connected to the optical sensor and the database. The processor compares a characteristic value of the sensing datum with characteristic values of sample data stored in the database and generates a detection data.
Abstract:
Devices and methods for performing frequency domain (FD) fluorescence lifetime spectroscopy are provided. The devices include a modulated light source, a focusing optical fiber, a detecting optical fiber, and a detector. The methods include focusing sinusoidal modulated incident light from a light source on a biological sample containing a protein, detecting a range of wavelengths of sinusoidal modulated fluorescent light emitted from the protein, determining a phase shift for the modulated fluorescent light, determining an amplitude modulation of the modulated fluorescent light, and determining a fluorescence lifetime of the protein.
Abstract:
A method for measuring a value change of a parameter at the sensing area of an optical sensor element. The method includes the steps:changing the value of the parameter thereby detecting the position and position change of a first signal peak within the detection window of a detector as well as thereby detecting the position and the eventual position change of a second signal peak within the detection window of the detector, and correlating the position detections of first and second signal peak and correlating the position change detections of first and second signal peak and attributing a value and/or a value change to the correlated detections